ترغب بنشر مسار تعليمي؟ اضغط هنا

New method for black-hole spin measurement based on flux variation from an infalling gas ring

343   0   0.0 ( 0 )
 نشر من قبل Kotaro Moriyama
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new method for black hole spin measurement. In this method, we consider a gas blob or ring falling onto a black hole from the marginally stable orbit, keeping its initial orbital angular momentum. We calculate the gas motion and photon trajectories in the Kerr space-time and, assuming that the gas blob or ring emits monochromatic radiation, carefully examine how it is observed by a distant observer. The light curve of the orbiting gas blob is composed of many peaks because of periodic enhancement of the flux due to the gravitational lensing and beaming effects. Further, the intensity of each peak first gradually increases with time due to the focusing effect around the photon circular orbit and then rapidly decreases due to the gravitational redshift, as the gas blob approaches the event horizon. The light curve of the gas ring is equivalent to a superposition of those of the blobs with various initial orbital phases, and so it is continuous and with no peaks. The flux first gradually increases and then rapidly decays, as in the blob model. The flux variation timescale depends on the black hole spin and is independent from the inclination angle, while time averaged frequency shift have dependences of both effects. We can thus, in principle, determine spin and inclination angle from observations. The observational implications and future issues are briefly discussed.



قيم البحث

اقرأ أيضاً

The black hole spacetime is described by general relativity and characterized by two quantities: the black hole mass and spin. Black hole spin measurement requires information from the vicinity of the event horizon, which is spatially resolved for th e Galactic center SagittariusA* (SgrA*) and nearby radio galaxy M87 by means of very long baseline interferometry (VLBI) observations with the Event Horizon Telescope (EHT). In this paper, we simulate EHT observations for a gas cloud intermittently falling onto a black hole, and construct a method for spin measurement based on its relativistic flux variation. The light curve of the infalling gas cloud is composed of peaks formed by photons which directly reach a distant observer and by secondary ones reaching the observer after more than one rotation around the black hole. The time interval between the peaks is determined by a period of photon rotation near the photon circular orbit which uniquely depends on the spin. We perform synthetic EHT observations for SgrA* under a more realistic situation that a number of gas clouds intermittently fall towards the black hole with various initial parameters. Even for this case, the black hole spin dependence is detectable in correlated flux densities which are accurately calibrated by baselines between sites with redundant stations. The synthetic observations indicate that our methodology can be applied to EHT observations of Sgr A* since April 2017.
The black hole candidate EXO 1846-031 underwent an outburst in 2019, after at least 25 years in quiescence. We observed the system using textit{NuSTAR} on August 3rd, 2019. The 3--79 keV spectrum shows strong relativistic reflection features. Our bas eline model gives a nearly maximal black hole spin value of $a=0.997_{-0.002}^{+0.001}$ ($1sigma$ statistical errors). This high value nominally excludes the possibility of the central engine harboring a neutron star. Using several models, we test the robustness of our measurement to assumptions about the density of the accretion disk, the nature of the corona, the choice of disk continuum model, and addition of reflection from the outer regions of the accretion disk. All tested models agree on a very high black hole spin value and a high value for the inclination of the inner accretion disk of $thetaapprox73^circ$. We discuss the implications of this spin measurement in the population of stellar mass black holes with known spins, including LIGO events.
269 - J. M. Miller 2013
We report on a Chandra/HETG X-ray spectrum of the black hole candidate MAXI J1305-704. A rich absorption complex is detected in the Fe L band, including density-sensitive lines from Fe XX, XXI, and XXII. Spectral analysis over three bands with photoi onization models generally requires a gas density of n > 1 E+17 cm^-3. Assuming a luminosity of L = 1 E+37 erg/s, fits to the 10-14 A band constrain the absorbing gas to lie within r = 3.9(7) E+3 km from the central engine, or about r = 520 +/- 90 (M/5 Msun) r_g, where r_g = GM/c^2. At this distance from the compact object, gas in Keplerian orbits should have a gravitational red-shift of z = v/c ~ 3 +/- 1 E-3 (M/5 Msun), and any tenuous inflowing gas should have a free-fall velocity of v/c ~ 6 +/- 1 E-2 (M/5 Msun)^1/2. The best-fit single-zone photoionization models measure a red-shift of v/c = 2.6-3.2 E-3. Models with two zones provide significantly improved fits; the additional zone is measured to have a red-shift of v/c =4.6-4.9 E-2 (models including two zones suggest slightly different radii and may point to lower densities). Thus, the shifts are broadly consistent with the photoionization radius. The results may be explained in terms of a failed wind like those predicted in some numerical simulations. We discuss our results in the context of accretion flows across the mass scale, and the potential role of failed winds in black hole state transitions.
We present the first observational evidence that light propagating near a rotating black hole is twisted in phase and carries orbital angular momentum (OAM). This physical observable allows a direct measurement of the rotation of the black hole. We e xtracted the OAM spectra from the radio intensity data collected by the Event Horizon Telescope from around the black hole M87* by using wavefront reconstruction and phase recovery techniques and from the visibility amplitude and phase maps. This method is robust and complementary to black-hole shadow circularity analyses. It shows that the M87* rotates clockwise with an estimated rotation parameter $a=0.90pm0.05$ with $sim 95%$ confidence level (c.l.) and inclination $i=17^circ pm2^circ$, equivalent to a magnetic arrested disk with inclination $i=163^circpm2^circ$. From our analysis we conclude, within a 6 $sigma$ c.l., that the M87* is rotating.
Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitat ional lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov (2002) and conservation of the Walker-Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا