ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dirichlet Problem with Prescribed Asymptotic Singularities

125   0   0.0 ( 0 )
 نشر من قبل H. Blaine Lawson Jr.
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We solve the nonlinear Dirichlet problem (uniquely) for functions with prescribed asymptotic singularities at a finite number of points, and with arbitrary continuous boundary data, on a domain in euclidean space. The main results apply, in particular, to subequations with a Riesz characteristic $p geq 2$. In this case it is shown that, without requiring uniform ellipticity, the Dirichlet problem can be solved uniquely for arbitrary continuous boundary data with singularities asymptotic to the Riesz kernel: $Theta_j K_p(x - x_j)$, where $K_p(x) = - {1over|x|^{p-2}}$ for $p>2$ and $K_2(x) = log |x|$, at any prescribed finite set of points $x_1,...,x_k$ in the domain and any finite set of positive real numbers $Theta_1,..., Theta_k$. This sharpens a previous result of the authors concerning the discreteness of high-density sets of subsolutions. Uniqueness and existence results are also established for finite-type singularities such as $Theta_j |x - x_j|^{2-p}$ for $1leq p<2$. The main results apply similarly with prescribed singularities asymptotic to the fundamental solutions of Armstrong-Sirakov-Smart (in the uniformly elliptic case).



قيم البحث

اقرأ أيضاً

In this paper, we solve the Dirichlet problem with continuous boundary data for the Lagrangian mean curvature equation on a uniformly convex, bounded domain in $mathbb{R}^n$.
We shall discuss the inhomogeneous Dirichlet problem for: $f(x,u, Du, D^2u) = psi(x)$ where $f$ is a natural differential operator, with a restricted domain $F$, on a manifold $X$. By natural we mean operators that arise intrinsically from a given ge ometry on $X$. An important point is that the equation need not be convex and can be highly degenerate. Furthermore, the inhomogeneous term can take values at the boundary of the restricted domain $F$ of the operator $f$. A simple example is the real Monge-Amp`ere operator ${rm det}({rm Hess},u) = psi(x)$ on a riemannian manifold $X$, where ${rm Hess}$ is the riemannian Hessian, the restricted domain is $F = {{rm Hess} geq 0}$, and $psi$ is continuous with $psigeq0$. A main new tool is the idea of local jet-equivalence, which gives rise to local weak comparison, and then to comparison under a natural and necessary global assumption. The main theorem applies to pairs $(F,f)$, which are locally jet-equivalent to a given constant coefficient pair $({bf F}, {bf f})$. This covers a large family of geometric equations on manifolds: orthogonally invariant operators on a riemannian manifold, G-invariant operators on manifolds with G-structure, operators on almost complex manifolds, and operators, such as the Lagrangian Monge-Amp`ere operator, on symplectic manifolds. It also applies to all branches of these operators. Complete existence and uniqueness results are established with existence requiring the same boundary assumptions as in the homogeneous case [10]. We also have results where the inhomogeneous term $psi$ is a delta function.
We prove sharp blow up rates of solutions of higher order conformally invariant equations in a bounded domain with an isolated singularity, and show the asymptotic radial symmetry of the solutions near the singularity. This is an extension of the cel ebrated theorem of Caffarelli-Gidas-Spruck for the second order Yamabe equation with isolated singularities to higher order equations. Our approach uses blow up analysis for local integral equations, and is unified for all critical elliptic equations of order smaller than the dimension. We also prove the existence of Fowler solutions to the global equations, and establish a sup*inf type Harnack inequality of Schoen for integral equations.
345 - Gisella Croce 2011
We study a Dirichlet problem for an elliptic equation defined by a degenerate coercive operator and a singular right-hand side. We will show that the right-hand side has some regularizing effects on the solutions, even if it is singular.
The local invariants of a meromorphic Abelian differential on a Riemann surface of genus $g$ are the orders of zeros and poles, and the residues at the poles. The main result of this paper is that with few exceptions, every pattern of orders and resi dues can be obtain by an Abelian differential. These exceptions are two families in genus zero when the orders of the poles are either all simple or all nonsimple. Moreover, we even show that the pattern can be realized in each connected component of strata. Finally we give consequences of these results in algebraic and flat geometry. The main ingredient of the proof is the flat representation of the Abelian differentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا