ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards the classification of homogeneous third-order Hamiltonian operators

168   0   0.0 ( 0 )
 نشر من قبل Raffaele Vitolo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $V$ be a vector space of dimension $n+1$. We demonstrate that $n$-component third-order Hamiltonian operators of differential-geometric type are parametrised by the algebraic variety of elements of rank $n$ in $S^2(Lambda^2V)$ that lie in the kernel of the natural map $S^2(Lambda^2V)to Lambda^4V$. Non-equivalent operators correspond to different orbits of the natural action of $SL(n+1)$. Based on this result, we obtain a classification of such operators for $nleq 4$.



قيم البحث

اقرأ أيضاً

Based on the theory of Poisson vertex algebras we calculate skew-symmetry conditions and Jacobi identities for a class of third-order nonlocal operators of differential-geometric type. Hamiltonian operators within this class are defined by a Monge me tric and a skew-symmetric two-form satisfying a number of differential-geometric constraints. Complete classification results in the 2-component and 3-component cases are obtained.
We investigate $n$-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in $mathbb{P}^{n+2}$ satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space $W$ of dimension $n+2$, classify $n$-tuples of skew-symmetric 2-forms $A^{alpha} in Lambda^2(W)$ such that [ phi_{beta gamma}A^{beta}wedge A^{gamma}=0, ] for some non-degenerate symmetric $phi$.
86 - R. Vitolo 2018
Hamiltonian operators are used in the theory of integrable partial differential equations to prove the existence of infinite sequences of commuting symmetries or integrals. In this paper it is illustrated the new Reduce package cde for computations o n Hamiltonian operators. cde can compute the Hamiltonian properties of skew-adjointness and vanishing Schouten bracket for a differential operator, as well as the compatibility property of two Hamiltonian operators and the Lie derivative of a Hamiltonian operator with respect to a vector field. It can also make computations on (variational) multivectors, or functions on supermanifolds. This can open the way to applications in other fields of Mathematical Physics.
302 - Ruipu Bai , Yinghua Zhang 2016
In this paper we study $k$-order homogeneous Rota-Baxter operators with weight $1$ on the simple $3$-Lie algebra $A_{omega}$ (over a field of characteristic zero), which is realized by an associative commutative algebra $A$ and a derivation $Delta$ a nd an involution $omega$ (Lemma mref{lem:rbd3}). A $k$-order homogeneous Rota-Baxter operator on $A_{omega}$ is a linear map $R$ satisfying $R(L_m)=f(m+k)L_{m+k}$ for all generators ${ L_m~ |~ min mathbb Z }$ of $A_{omega}$ and a map $f : mathbb Z rightarrowmathbb F$, where $kin mathbb Z$. We prove that $R$ is a $k$-order homogeneous Rota-Baxter operator on $A_{omega}$ of weight $1$ with $k eq 0$ if and only if $R=0$ (see Theorems 3.2, and $R$ is a $0$-order homogeneous Rota-Baxter operator on $A_{omega}$ of weight $1$ if and only if $R$ is one of the forty possibilities which are described in Theorems3.5, 3.7, 3.9, 3.10, 3.18, 3.21 and 3.22.
105 - Ruipu Bai , Yinghua Zhang 2015
In the paper we study homogeneous Rota-Baxter operators with weight zero on the infinite dimensional simple $3$-Lie algebra $A_{omega}$ over a field $F$ ( $ch F=0$ ) which is realized by an associative commutative algebra $A$ and a derivation $Delta$ and an involution $omega$ ( Lemma mref{lem:rbd3} ). A homogeneous Rota-Baxter operator on $A_{omega}$ is a linear map $R$ of $A_{omega}$ satisfying $R(L_m)=f(m)L_m$ for all generators of $A_{omega}$, where $f : A_{omega} rightarrow F$. We proved that $R$ is a homogeneous Rota-Baxter operator on $A_{omega}$ if and only if $R$ is the one of the five possibilities $R_{0_1}$, $R_{0_2}$,$R_{0_3}$,$R_{0_4}$ and $R_{0_5}$, which are described in Theorem mref{thm:thm1}, mref{thm:thm4}, mref{thm:thm01}, mref{thm:thm03} and mref{thm:thm04}. By the five homogeneous Rota-Baxter operators $R_{0_i}$, we construct new $3$-Lie algebras $(A, [ , , ]_i)$ for $1leq ileq 5$, such that $R_{0_i}$ is the homogeneous Rota-Baxter operator on $3$-Lie algebra $(A, [ , , ]_i)$, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا