Adiabatic Invariance of Oscillons/I-balls


الملخص بالإنكليزية

Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or $I$-balls. We prove the adiabatic invariance of the oscillons/$I$-balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/$I$-balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/$I$-balls are only quasi-stable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the $I$-balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/$I$-balls is due to the adiabatic invariance.

تحميل البحث