ﻻ يوجد ملخص باللغة العربية
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or $I$-balls. We prove the adiabatic invariance of the oscillons/$I$-balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/$I$-balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/$I$-balls are only quasi-stable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the $I$-balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/$I$-balls is due to the adiabatic invariance.
Oscillons are spatially localized structures that appear in scalar field theories and exhibit extremely long life-times. We go beyond single-field analyses and study oscillons comprised of multiple interacting fields, each having an identical potenti
We study various aspects of the scattering of generalized compact oscillons in the signum-Gordon model in (1+1) dimensions. Using covariance of the model we construct traveling oscillons and study their interactions and the dependence of these intera
We present explicit solutions of the signum-Gordon scalar field equation which have finite energy and are periodic in time. Such oscillons have a strictly finite size. They do not emit radiation.
Oscillons are extremely long-lived, spatially-localized field configurations in real-valued scalar field theories that slowly lose energy via radiation of scalar waves. Before their eventual demise, oscillons can pass through (one or more) exceptiona
We consider a (1+1) dimensional scalar field theory that supports oscillons, which are localized, oscillatory, stable solutions to nonlinear equations of motion. We study this theory in an expanding background and show that oscillons now lose energy,