ترغب بنشر مسار تعليمي؟ اضغط هنا

First polarised light with the NIKA camera

57   0   0.0 ( 0 )
 نشر من قبل Alessia Ritacco
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NIKA is a dual-band camera operating with 315 frequency multiplexed LEKIDs cooled at 100 mK. NIKA is designed to observe the sky in intensity and polarisation at 150 and 260 GHz from the IRAM 30-m telescope. It is a test-bench for the final NIKA2 camera. The incoming linear polarisation is modulated at four times the mechanical rotation frequency by a warm rotating multi-layer Half Wave Plate. Then, the signal is analysed by a wire grid and finally absorbed by the LEKIDs. The small time constant (< 1ms ) of the LEKID detectors combined with the modulation of the HWP enables the quasi-simultaneous measurement of the three Stokes parameters I, Q, U, representing linear polarisation. In this paper we present results of recent observational campaigns demonstrating the good performance of NIKA in detecting polarisation at mm wavelength.



قيم البحث

اقرأ أيضاً

Magnetic fields, which play a major role in a large number of astrophysical processes from galactic to cosmological scales, can be traced via observations of dust polarization as demonstrated by the Planck satellite results. In particular, low-resolu tion observations of dust polarization have demonstrated that Galactic filamentary structures, where star formation takes place, are associated to well organized magnetic fields. A better understanding of this process requires detailed observations of galactic dust polarization on scales of 0.01 to 0.1 pc. Such high-resolution polarization observations can be carried out at the IRAM 30 m telescope using the recently installed NIKA2 camera, which features two frequency bands at 260 and 150 GHz (respectively 1.15 and 2.05 mm), the 260 GHz band being polarization sensitive. NIKA2 so far in commissioning phase, has its focal plane filled with ~3300 detectors to cover a Field of View (FoV) of 6.5 arcminutes diameter. The NIKA camera, which consisted of two arrays of 132 and 224 Lumped Element Kinetic Inductance Detectors (LEKIDs) and a FWHM (Full-Width-Half-Maximum) of 12 and 18.2 arcsecond at 1.15 and 2.05 mm respectively, has been operated at the IRAM 30 m telescope from 2012 to 2015 as a test-bench for NIKA2. NIKA was equipped of a room temperature polarization system (a half wave plate (HWP) and a grid polarizer facing the NIKA cryostat window). The fast and continuous rotation of the HWP permits the quasi simultaneous reconstruction of the three Stokes parameters, I, Q and U at 150 and 260 GHz. This paper presents the first polarization measurements with KIDs and reports the polarization performance of the NIKA camera and the pertinence of the choice of the polarization setup in the perspective of NIKA2. (abridged)
Current generation millimeter wavelength detectors suffer from scaling limits imposed by complex cryogenic readout electronics. To circumvent this it is imperative to investigate technologies that intrinsically incorporate strong multiplexing. One po ssible solution is the kinetic inductance detector (KID). In order to assess the potential of this nascent technology, a prototype instrument optimized for the 2 mm atmospheric window was constructed. Known as the Neel IRAM KIDs Array (NIKA), it was recently tested at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. The measurement resulted in the imaging of a number of sources, including planets, quasars, and galaxies. The images for Mars, radio star MWC349, quasar 3C345, and galaxy M87 are presented. From these results, the optical NEP was calculated to be around $1 times 10^{-15}$ W$ / $Hz$^{1/2}$. A factor of 10 improvement is expected to be readily feasible by improvements in the detector materials and reduction of performance-degrading spurious radiation.
We present the first detection of the thermal Sunyaev-Zeldovich (tSZ) effect from a cluster of galaxies performed with a KIDs (Kinetic Inductance Detectors) based instrument. The tSZ effect is a distortion of the black body CMB (Cosmic Microwave Back ground) spectrum produced by the inverse Compton interaction of CMB photons with the hot electrons of the ionized intra-cluster medium. The massive, intermediate redshift cluster RX J1347.5-1145 has been observed using NIKA (New IRAM KIDs arrays), a dual-band (140 and 240 GHz) mm-wave imaging camera, which exploits two arrays of hundreds of KIDs: the resonant frequencies of the superconducting resonators are shifted by mm-wave photons absorption. This tSZ cluster observation demonstrates the potential of the next generation NIKA2 instrument, being developed for the 30m telescope of IRAM, at Pico Veleta (Spain). NIKA2 will have 1000 detectors at 140GHz and 2x2000 detectors at 240GHz, providing in that band also a measurement of the linear polarization. NIKA2 will be commissioned in 2015.
The New IRAM KID Array (NIKA) instrument is a dual-band imaging camera operating with Kinetic Inductance Detectors (KID) cooled at 100 mK. NIKA is designed to observe the sky at wavelengths of 1.25 and 2.14 mm from the IRAM 30 m telescope at Pico Vel eta with an estimated resolution of 13,arcsec and 18 arcsec, respectively. This work presents the performance of the NIKA camera prior to its opening to the astrophysical community as an IRAM common-user facility in early 2014. NIKA is a test bench for the final NIKA2 instrument to be installed at the end of 2015. The last NIKA observation campaigns on November 2012 and June 2013 have been used to evaluate this performance and to improve the control of systematic effects. We discuss here the dynamical tuning of the readout electronics to optimize the KID working point with respect to background changes and the new technique of atmospheric absorption correction. These modifications significantly improve the overall linearity, sensitivity, and absolute calibration performance of NIKA. This is proved on observations of point-like sources for which we obtain a best sensitivity (averaged over all valid detectors) of 40 and 14 mJy.s$^{1/2}$ for optimal weather conditions for the 1.25 and 2.14 mm arrays, respectively. NIKA observations of well known extended sources (DR21 complex and the Horsehead nebula) are presented. This performance makes the NIKA camera a competitive astrophysical instrument.
239 - A. Monfardini , R. Adam , A. Adane 2013
NIKA (New IRAM KID Arrays) is a dual-band imaging instrument installed at the IRAM (Institut de RadioAstronomie Millimetrique) 30-meter telescope at Pico Veleta (Spain). Two distinct Kinetic Inductance Detectors (KID) focal planes allow the camera to simultaneously image a field-of-view of about 2 arc-min in the bands 125 to 175 GHz (150 GHz) and 200 to 280 GHz (240 GHz). The sensitivity and stability achieved during the last commissioning Run in June 2013 allows opening the instrument to general observers. We report here the latest results, in particular in terms of sensitivity, now comparable to the state-of-the-art Transition Edge Sensors (TES) bolometers, relative and absolute photometry. We describe briefly the next generation NIKA-2 instrument, selected by IRAM to occupy, from 2015, the continuum imager/polarimeter slot at the 30-m telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا