ﻻ يوجد ملخص باللغة العربية
The dielectric engineered tunnel field-effect transistor (DE-TFET) as a high performance steep transistor is proposed. In this device, a combination of high-k and low-k dielectrics results in a high electric field at the tunnel junction. As a result a record ON-current of about 1000 uA/um and a subthreshold swing (SS) below 20mV/dec are predicted for WTe2 DE-TFET. The proposed TFET works based on a homojunction channel and electrically doped contacts both of which are immune to interface states, dopant fluctuations, and dopant states in the band gap which typically deteriorate the OFF-state performance and SS in conventional TFETs.
We study field effect transistor characteristics in etched single layer MoS2 nanoribbon devices of width 50nm with ohmic contacts. We employ a SF6 dry plasma process to etch MoS2 nanoribbons using low etching (RF) power allowing very good control ove
We report on terahertz radiation detection with InGaAs/InAlAs Field Effect Transistors in quantizing magnetic field. The photovoltaic detection signal is investigated at 4.2 K as a function of the gate voltage and magnetic field. Oscillations analogo
We present an analytical device model for a graphene bilayer field-effect transistor (GBL-FET) with a graphene bilayer as a channel, and with back and top gates. The model accounts for the dependences of the electron and hole Fermi energies as well a
Superconducting field-effect transitor (SuFET) and Josephson field-effect transistor (JoFET) technologies take advantage of electric field induced control of charge carrier concentration in order to modulate the channel superconducting properties. De
Integrating negative capacitance (NC) into the field-effect transistors promises to break fundamental limits of power dissipation known as Boltzmann tyranny. However, realization of the stable static negative capacitance in the non-transient regime w