ﻻ يوجد ملخص باللغة العربية
We compute the integrand of the full-colour, two-loop, five-gluon scattering amplitude in pure Yang-Mills theory with all helicities positive, using generalized unitarity cuts. Tree-level BCJ relations, satisfied by amplitudes appearing in the cuts, allow us to deduce all the necessary non-planar information for the full-colour amplitude from known planar data. We present our result in terms of irreducible numerators, with colour factors derived from the multi-peripheral colour decomposition. Finally, the leading soft divergences are checked to reproduce the expected infrared behaviour.
We give a representation of the parity-even part of the planar two-loop six-gluon MHV amplitude of N=4 super-Yang-Mills theory, in terms of loop-momentum integrals with simple dual conformal properties. We evaluate the integrals numerically in order
We present a compact analytic expression for the leading colour two-loop five-gluon amplitude in Yang-Mills theory with a single negative helicity and four positive helicities. The analytic result is reconstructed from numerical evaluations over fini
We have computed the five-loop corrections to the scale dependence of the renormalized coupling constant for Quantum Chromodynamics (QCD), its generalization to non-Abelian gauge theories with a simple compact Lie group, and for Quantum Electrodynami
We express the planar five- and six-gluon two-loop Yang-Mills amplitudes with all positive helicities in compact analytic form using D-dimensional local integrands that are free of spurious singularities. The integrand is fixed from on-shell tree amp
We review the status of calculations of Yang-Mills Green functions from Dyson-Schwinger equations. The role of truncations is discussed and results for the four-gluon vertex are presented.