ﻻ يوجد ملخص باللغة العربية
Heavy nuclei bombarded with protons and deuterons in the 1 GeV range have a large probability of undergoing a process of evaporation and fission; less frequently, the prompt emission of few intermediate-mass fragments can also be observed. We employ a recently developed microscopic approach, based on the Boltzmann-Langevin transport equation, to investigate the role of mean-field dynamics and phase-space fluctuations in these reactions. We find that the formation of few IMFs can be confused with asymmetric fission when relying on yield observables, but it can not be assimilated to the statistical decay of a compound nucleus when analysing the dynamics and kinematic observables: it can be described as a fragmentation process initiated by phase-space fluctuations, and successively frustrated by the mean-field resilience. As an extreme situation, which corresponds to non-negligible probability, the number of fragments in the exit channel reduces to two, so that fission-like events are obtained by re-aggregation processes. This interpretation, inspired by nuclear-spallation experiments, can be generalised to heavy-ion collisions from Fermi to relativistic energies, for situations when the system is closely approaching the fragmentation threshold.
We investigate the prompt emission of few intermediate-mass fragments in spallation reactions induced by protons and deuterons in the 1 GeV range. Such emission has a minor contribution to the total reaction cross section, but it may overcome evapora
Fissioning nuclei and fission fragments, nuclear fragments emerging from energetic collisions, or nuclei probed with various external fields can emit one or more pre-equilibrium neutrons, protons, and potentially other heavier nuclear fragments. I de
The relativistic invariant approach is applied to analyzing the 3.3 A GeV $^{22}$Ne fragmentation in a nuclear track emulsion. New results on few-body dissociations have been obtained from the emulsion exposures to 2.1 A GeV $^{14}$N and 1.2 A GeV $^
The E1(T=1) isovector dipole giant resonance (GDR) in heavy and super-heavy deformed nuclei is analyzed over a sample of 18 rare-earth nuclei, 4 actinides and three chains of super-heavy elements (Z=102, 114 and 120). Basis of the description is self
We employ new field-theoretical tools to study photons and jets in a non-equilibrium quark-gluon plasma. Jet broadening and photon emission takes place through radiation which is suppressed by repeated and coherent interaction with the medium. We ana