ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum reflection of bright solitary matter-waves from a narrow attractive potential

114   0   0.0 ( 0 )
 نشر من قبل Anna Marchant
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of quantum reflection from a narrow, attractive, potential using bright solitary matter-waves formed from a 85Rb Bose-Einstein condensate. We create narrow potentials using a tightly focused, red-detuned laser beam, and observe reflection of up to 25% of the atoms, along with the trapping of atoms at the position of the beam. We show that the observed reflected fraction is much larger than theoretical predictions for a narrow Gaussian potential well; a more detailed model of bright soliton propagation, accounting for the generic presence of small subsidiary intensity maxima in the red-detuned beam, suggests that these small intensity maxima are the cause of this enhanced reflection.



قيم البحث

اقرأ أيضاً

Solitons are non-dispersive wave solutions that arise in a diverse range of nonlinear systems, stablised by a focussing or defocussing nonlinearity. First observed in shallow water, solitons have subsequently been studied in many other fields includi ng nonlinear optics, biophysics, astrophysics, plasma and particle physics. They are characterised by well localised wavepackets that maintain their initial shape and amplitude for all time, even following collisions with other solitons. Here we report the controlled formation of bright solitary matter-waves, the 3D analog to solitons, from Bose-Einstein condensates of 85Rb and observe their propagation in an optical waveguide. These results pave the way for new experimental studies of bright solitary matterwave dynamics to elucidate the wealth of existing theoretical work and to explore an array of potential applications including novel interferometric devices, the study of short-range atom-surface potentials and the realisation of Schru007fodingercat states.
517 - S. J. Kim , H. Yu , S. T. Gang 2015
We have constructed an asymmetric matter-wave beam splitter and a ring potential on an atom chip with Bose-Einstein condensates using radio-frequency dressing. By applying rf-field parallel to the quantization axis in the vicinity of the static trap minima added to perpendicular rf-fields, versatile controllability on the potentials is realized. Asymmetry of the rf-induced double well is manipulated without discernible displacement of the each well along horizontal and vertical direction. Formation of an isotropic ring potential on an atom chip is achieved by compensating the gradient due to gravity and inhomogeneous coupling strength. In addition, position and rotation velocity of a BEC along the ring geometry are controlled by the relative phase and the frequency difference between the rf-fields, respectively.
We report on the observation and coherent excitation of atoms on the narrow inner-shell orbital transition, connecting the erbium ground state $[mathrm{Xe}] 4f^{12} (^3text{H}_6)6s^{2}$ to the excited state $[mathrm{Xe}] 4f^{11}(^4text{I}_{15/2})^05d (^5text{D}_{3/2}) 6s^{2} (15/2,3/2)^0_7$. This transition corresponds to a wavelength of 1299 nm and is optically closed. We perform high-resolution spectroscopy to extract the $g_J$-factor of the $1299$-nm state and to determine the frequency shift for four bosonic isotopes. We further demonstrate coherent control of the atomic state and extract a lifetime of 178(19) ms which corresponds to a linewidth of 0.9(1) Hz. The experimental findings are in good agreement with our semi-empirical model. In addition, we present theoretical calculations of the atomic polarizability, revealing several different magic-wavelength conditions. Finally, we make use of the vectorial polarizability and confirm a possible magic wavelength at 532 nm.
We experimentally study the spin dynamics of mesoscopic ensembles of ultracold magnetic spin-3 atoms located in two separated wells of an optical dipole trap. We use a radio-frequency sweep to selectively flip the spin of the atoms in one of the well s, which produces two separated spin domains of opposite polarization. We observe that these engineered spin domains are metastable with respect to the long-range magnetic dipolar interactions between the two ensembles. The absence of inter-cloud dipolar spin-exchange processes reveals a classical behavior, in contrast to previous results with atoms loaded in an optical lattice. When we merge the two subsystems, we observe spin-exchange dynamics due to contact interactions which enable the first determination of the s-wave scattering length of 52Cr atoms in the S=0 molecular channel a_0=13.5^{+11}_{-10.5}a_B (where a_B is the Bohr radius).
Using new experimental measurements of photoassociation resonances near the $^1mathrm{S}_0 rightarrow phantom{ }^3mathrm{P}_1$ intercombination transition in $^{84}$Sr and $^{86}$Sr, we present an updated study into the mass-scaling behavior of boson ic strontium dimers. A previous mass-scaling model [Borkowski et al., Phys. Rev. A 90, 032713 (2014)] was able to incorporate a large number of photoassociation resonances for $^{88}$Sr, but at the time only a handful of resonances close to the dissociation limit were known for $^{84}$Sr and $^{86}$Sr. In this work, we perform a more thorough measurement of $^{84}$Sr and $^{86}$Sr bound states, identifying multiple new resonances at deeper binding energies out to $E/h=-5$ GHz. We also identify several previously measured resonances that cannot be experimentally reproduced and provide alternative binding energies instead. With this improved spectrum, we develop a mass-scaled model that reproduces the observed binding energies of $^{86}$Sr and $^{88}$Sr to within 1 MHz. In order to accurately reproduce the deeper bound states, our model includes a second $1_u$ channel and more faithfully reproduces the depth of the potential. As determined by the previous mass-scaling study, $^{84}$Sr $0_u^+$ levels are strongly perturbed by the avoided crossing between the $^1mathrm{S}_0 + phantom{ }^3mathrm{P}_1$ $0_u^+$ $(^3Pi_u)$ and $^1mathrm{S}_0 + phantom{ }^1mathrm{D}_2$ $0_u^+$ $(^1Sigma_u^+)$ potential curves and therefore are not included in this mass-scaled model, but are accurately reproduced using an isotope-specific model with slightly different quantum defect parameters. In addition, the optical lengths of the $^{84}$Sr $0_u^+, u=-2$ to $ u=-5$ states are measured and compared to numerical estimates to characterize their use as optical Feshbach resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا