ترغب بنشر مسار تعليمي؟ اضغط هنا

CLASH: Joint Analysis of Strong-Lensing, Weak-Lensing Shear and Magnification Data for 20 Galaxy Clusters

114   0   0.0 ( 0 )
 نشر من قبل Keiichi Umetsu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters selected from the CLASH survey. Our analysis combines constraints from 16-band HST observations and wide-field multi-color imaging taken primarily with Subaru/Suprime-Cam. We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all clusters. We find internal consistency of the ensemble mass calibration to be $le 5% pm 6%$ by comparison with the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample, we examine the concentration-mass relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $c|_{z=0.34} = 3.95 pm 0.35$ at $M_{200c} simeq 14times 10^{14}M_odot$ and an intrinsic scatter of $sigma(ln c_{200c}) = 0.13 pm 0.06$, in excellent agreement with LCDM predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos, namely, the NFW, Einasto, and DARKexp models, whereas the single power-law, cored isothermal and Burkert density profiles are disfavored by the data. We show that cuspy halo models that include the two-halo term provide improved agreement with the data. For the NFW halo model, we measure a mean concentration of $c_{200c} = 3.79^{+0.30}_{-0.28}$ at $M_{200c} = 14.1^{+1.0}_{-1.0}times 10^{14}M_odot$, demonstrating consistency between complementary analysis methods.



قيم البحث

اقرأ أيضاً

We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19<z<0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wid e-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ~25 in the radial range of 200 to 3500kpc/h. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of $c_{200c}=4.01^{+0.35}_{-0.32}$ at $M_{200c}=1.34^{+0.10}_{-0.09} 10^{15}M_{odot}$. We show this is in excellent agreement with Lambda cold-dark-matter (LCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is $alpha_E=0.191^{+0.071}_{-0.068}$, which is consistent with the NFW-equivalent Einasto parameter of $sim 0.18$. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data, and measure cluster masses at several characteristic radii. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the LCDM model.
We present results from a comprehensive lensing analysis in HST data, of the complete CLASH cluster sample. We identify new multiple-images previously undiscovered allowing improved or first constraints on the cluster inner mass distributions and pro files. We combine these strong-lensing constraints with weak-lensing shape measurements within the HST FOV to jointly constrain the mass distributions. The analysis is performed in two different common parameterizations (one adopts light-traces-mass for both galaxies and dark matter while the other adopts an analytical, elliptical NFW form for the dark matter), to provide a better assessment of the underlying systematics - which is most important for deep, cluster-lensing surveys, especially when studying magnified high-redshift objects. We find that the typical (median), relative systematic differences throughout the central FOV are $sim40%$ in the (dimensionless) mass density, $kappa$, and $sim20%$ in the magnification, $mu$. We show maps of these differences for each cluster, as well as the mass distributions, critical curves, and 2D integrated mass profiles. For the Einstein radii ($z_{s}=2$) we find that all typically agree within $10%$ between the two models, and Einstein masses agree, typically, within $sim15%$. At larger radii, the total projected, 2D integrated mass profiles of the two models, within $rsim2arcmin$, differ by $sim30%$. Stacking the surface-density profiles of the sample from the two methods together, we obtain an average slope of $dlog (Sigma)/dlog(r)sim-0.64pm0.1$, in the radial range [5,350] kpc. Lastly, we also characterize the behavior of the average magnification, surface density, and shear differences between the two models, as a function of both the radius from the center, and the best-fit values of these quantities.
We present the cluster mass-richness scaling relation calibrated by a weak lensing analysis of >18000 galaxy cluster candidates in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). Detected using the 3D-Matched-Filter cluster-finder of Mi lkeraitis et al., these cluster candidates span a wide range of masses, from the small group scale up to $sim10^{15} M_{odot}$, and redshifts 0.2 $lesssim zlesssim$ 0.9. The total significance of the stacked shear measurement amounts to 54$sigma$. We compare cluster masses determined using weak lensing shear and magnification, finding the measurements in individual richness bins to yield 1$sigma$ compatibility, but with magnification estimates biased low. This first direct mass comparison yields important insights for improving the systematics handling of future lensing magnification work. In addition, we confirm analyses that suggest cluster miscentring has an important effect on the observed 3D-MF halo profiles, and we quantify this by fitting for projected cluster centroid offsets, which are typically $sim$ 0.4 arcmin. We bin the cluster candidates as a function of redshift, finding similar cluster masses and richness across the full range up to $z sim$ 0.9. We measure the 3D-MF mass-richness scaling relation $M_{200} = M_0 (N_{200} / 20)^beta$. We find a normalization $M_0 sim (2.7^{+0.5}_{-0.4}) times 10^{13} M_{odot}$, and a logarithmic slope of $beta sim 1.4 pm 0.1$, both of which are in 1$sigma$ agreement with results from the magnification analysis. We find no evidence for a redshift-dependence of the normalization. The CFHTLenS 3D-MF cluster catalogue is now available at cfhtlens.org.
We present an analysis of observations made with the Arcminute Microkelvin Imager (AMI) and the Canada-France-Hawaii Telescope (CFHT) of six galaxy clusters in a redshift range of 0.16--0.41. The cluster gas is modelled using the Sunyaev--Zeldovich ( SZ) data provided by AMI, while the total mass is modelled using the lensing data from the CFHT. In this paper, we: i) find very good agreement between SZ measurements (assuming large-scale virialisation and a gas-fraction prior) and lensing measurements of the total cluster masses out to r_200; ii) perform the first multiple-component weak-lensing analysis of A115; iii) confirm the unusual separation between the gas and mass components in A1914; iv) jointly analyse the SZ and lensing data for the relaxed cluster A611, confirming our use of a simulation-derived mass-temperature relation for parameterizing measurements of the SZ effect.
250 - Johan Richard 2009
We present a statistical analysis of a sample of 20 strong lensing clusters drawn from the Local Cluster Substructure Survey (LoCuSS), based on high resolution Hubble Space Telescope imaging of the cluster cores and follow-up spectroscopic observatio ns using the Keck-I telescope. We use detailed parameterized models of the mass distribution in the cluster cores, to measure the total cluster mass and fraction of that mass associated with substructures within R<250kpc.These measurements are compared with the distribution of baryons in the cores, as traced by the old stellar populations and the X-ray emitting intracluster medium. Our main results include: (i) the distribution of Einstein radii is log-normal, with a peak and 1sigma width of <log(RE(z=2))>=1.16+/-0.28; (ii) we detect an X-ray/lensing mass discrepancy of <M_SL/M_X>=1.3 at 3 sigma significance -- clusters with larger substructure fractions displaying greater mass discrepancies, and thus greater departures from hydrostatic equilibrium; (iii) cluster substructure fraction is also correlated with the slope of the gas density profile on small scales, implying a connection between cluster-cluster mergers and gas cooling. Overall our results are consistent with the view that cluster-cluster mergers play a prominent role in shaping the properties of cluster cores, in particular causing departures from hydrostatic equilibrium, and possibly disturbing cool cores. Our results do not support recent claims that large Einstein radius clusters present a challenge to the CDM paradigm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا