ترغب بنشر مسار تعليمي؟ اضغط هنا

Point nodes persisting far beyond Tc in Bi2212

129   0   0.0 ( 0 )
 نشر من قبل Takeshi Kondo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In contrast to a complex feature of antinodal state, suffering from competing order(s), the pure pairing gap of cuprates is obtained in the nodal region, which therefore holds the key to the superconducting mechanism. One of the biggest question is whether the point nodal state as a hallmark of d-wave pairing collapses at Tc like the BCS-type superconductors, or it instead survives above Tc turning into the preformed pair state. A difficulty in this issue comes from the small magnitude of the nodal gap, which has been preventing experimentalists from solving it. Here we use a laser ARPES capable of ultrahigh energy resolution, and detect the point nodes surviving far beyond Tc in Bi2212. By tracking the temperature evolution of spectra, we reveal that the superconductivity occurs when the pair breaking rate is suppressed smaller than the single particle scattering rate on cooling, which governs the value of Tc in cuprates.



قيم البحث

اقرأ أيضاً

The phase diagram of the superconducting high-Tc cuprates is governed by two energy scales: T*, the temperature below which a gap is opened in the excitation spectrum, and Tc, the superconducting transition temperature. The way these two energy scale s are reflected in the low-temperature energy gap is being intensively debated. Using Zn substitution and carefully controlled annealing we prepared a set of samples having the same T* but different Tcs, and measured their gap using Angle Resolved Photoemission Spectroscopy (ARPES). We show that Tc is not related to the gap shape or size, but it controls the size of the coherence peak at the gap edge.
114 - K. Izawa , K. Kamata , Y. Nakajima 2002
To determine the superconducting gap function of a borocarbide superconductor YNi_2B_2C, the c-axis thermal conductivity kappa_zz was measured in a magnetic field rotated in various directions relative to the crystal axes. The angular variation of ka ppa_zz in H rotated within the ab-plane shows a peculiar fourfold oscillation with narrow cusps. The amplitude of this fourfold oscillation becomes very small when H is rotated conically around the c-axis with a tilt angle of 45 degrees. Based on these results, we provide the first compelling evidence that the gap function of YNi_2B_2C has POINT NODES, which are located along the [100] and [010]-directions. This unprecedented gap structure challenges the current view on the pairing mechanism and on the unusual superconducting properties of borocarbide superconductors.
We report on a photo-induced transient state of YBa2Cu2O6+x in which transport perpendicular to the Cu-O planes becomes highly coherent. This effect is achieved by excitation with mid-infrared optical pulses, tuned to the resonant frequency of apical oxygen vibrations, which modulate both lattice and electronic properties. Below the superconducting transition temperature Tc, the equilibrium signatures of superconducting interlayer coupling are enhanced. Most strikingly, the optical excitation induces a new reflectivity edge at higher frequency than the equilibrium Josephson plasma resonance, with a concomitant enhancement of the low frequency imaginary conductivity. Above Tc, the incoherent equilibrium conductivity becomes highly coherent, with the appearance of a reflectivity edge and a positive imaginary conductivity that increases with decreasing frequency. These features are observed up to room temperature in YBa2Cu2O6.45 and YBa2Cu2O6.5. The data above Tc can be fitted by hypothesizing that the light re-establishes a transient superconducting state over only a fraction of the solid, with a lifetime of a few picoseconds. Non-superconducting transport could also explain these observations, although one would have to assume transient carrier mobilities near 10^4 cm^2/(V.sec) at 100 K, with a density of charge carriers similar to the below Tc superfluid density. Our results are indicative of highly unconventional non-equilibrium physics and open new prospects for optical control of complex solids.
The control of non-equilibrium phenomena in complex solids is an important research frontier, encompassing new effects like light induced superconductivity. Here, we show that coherent optical excitation of molecular vibrations in the organic conduct or K3C60 can induce a non-equilibrium state with the optical properties of a superconductor. A transient gap in the real part of the optical conductivity and a low-frequency divergence of the imaginary part are measured for base temperatures far above equilibrium Tc=20 K. These findings underscore the role of coherent light fields in inducing emergent order.
We measured the electronic structure of Fe substituted Bi2212 using Angle Resolved Photoemission Spectroscopy (ARPES). We find that the substitution does not change the momentum dependence of the superconducting gap but induces a very anisotropic enh ancement of the scattering rate. A comparison of the effect of Fe substitution to that of Zn substitution suggests that the Fe reduces T$_c$ so effectively because it supresses very strongly the coherence weight around the anti-nodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا