ترغب بنشر مسار تعليمي؟ اضغط هنا

The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-Time Observations, First-Light Time, Distance to NGC 4666, and Progenitor Constraints

135   0   0.0 ( 0 )
 نشر من قبل Benjamin Shappee
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On 2014 Dec. 9.61, the All-Sky Automated Survey for SuperNovae (ASAS-SN or Assassin) discovered ASASSN-14lp just $sim2$ days after first light using a global array of 14-cm diameter telescopes. ASASSN-14lp went on to become a bright supernova ($V = 11.94$ mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ($Delta m_{15}(B) = 0.80 pm 0.05$), a $B$-band maximum at $2457015.82 pm 0.03$, a rise time of $16.94^{+ 0.11 }_{- 0.10 }$ days, and moderate host--galaxy extinction ($E(B-V)_{textrm{host}} = 0.33 pm 0.06$). Using ASASSN-14lp we derive a distance modulus for NGC 4666 of $mu = 30.8 pm 0.2$ corresponding to a distance of $14.7 pm 1.5$ Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any non-degenerate companion larger than $0.34 R_{textrm{sun}}$.



قيم البحث

اقرأ أيضاً

On 2012 May 17.2 UT, only 1.5 +/- 0.2 d after explosion, we discovered SN 2012cg, a Type Ia supernova (SN Ia) in NGC 4424 (d ~ 15 Mpc). As a result of the newly modified strategy employed by the Lick Observatory SN Search, a sequence of filtered imag es was obtained starting 161 s after discovery. Utilizing recent models describing the interaction of SN ejecta with a companion star, we rule out a ~1 M_Sun companion for half of all viewing angles and a red-giant companion for nearly all orientations. SN 2012cg reached a B-band maximum of 12.09 +/- 0.02 mag on 2012 June 2.0 and took ~17.3 d from explosion to reach this, typical for SNe Ia. Our pre-maximum brightness photometry shows a narrower-than-average B-band light curve for SN 2012cg, though slightly overluminous at maximum brightness and with normal color evolution (including some of the earliest SN Ia filtered photometry ever obtained). Spectral fits to SN 2012cg reveal ions typically found in SNe Ia at early times, with expansion velocities >14,000 km/s at 2.5 d past explosion. Absorption from C II is detected early, as well as high-velocity components of both Si II 6355 Ang. and Ca II. Our last spectrum (13.5 d past explosion) resembles that of the somewhat peculiar SN Ia 1999aa. This suggests that SN 2012cg will have a slower-than-average declining light curve, which may be surprising given the faster-than-average rising light curve.
We present an early-phase $g$-band light curve and visual-wavelength spectra of the normal Type Ia supernova (SN) 2013gy. The light curve is constructed by determining the appropriate S-corrections to transform KAIT natural-system $B$- and $V$-band p hotometry and Carnegie Supernova Project natural-system $g$-band photometry to the Pan-STARRS1 $g$-band natural photometric system. A Markov Chain Monte Carlo calculation provides a best-fit single power-law function to the first ten epochs of photometry described by an exponent of $2.16^{+0.06}_{-0.06}$ and a time of first light of MJD 56629.4$^{+0.1}_{-0.1}$, which is $1.93^{+0.12}_{-0.13}$ days (i.e., $<48$~hr) before the discovery date (2013 December 4.84 UT) and $-19.10^{+0.12}_{-0.13}$ days before the time of $B$-band maximum (MJD 56648.5$pm0.1$). The estimate of the time of first light is consistent with the explosion time inferred from the evolution of the Si II $lambda$6355 Doppler velocity. Furthermore, discovery photometry and previous nondetection limits enable us to constrain the companion radius down to $R_c leq 4,R_{odot}$. In addition to our early-time constraints, we use a deep +235 day nebular-phase spectrum from Magellan/IMACS to place a stripped H-mass limit of $< 0.018,M_{odot}$. Combined, these limits effectively rule out H-rich nondegenerate companions.
We present the snapshot distance method (SDM), a modern incarnation of a proposed technique for estimating the distance to a Type Ia supernova (SN Ia) from minimal observations. Our method, which has become possible owing to recent work in the applic ation of deep learning to SN Ia spectra (we use the deepSIP package), allows us to estimate the distance to an SN Ia from a single optical spectrum and epoch of $2+$ passband photometry -- one nights worth of observations (though contemporaneity is not a requirement). Using a compilation of well-observed SNe Ia, we generate snapshot distances across a wide range of spectral and photometric phases, light-curve shapes, photometric passband combinations, and spectrum signal-to-noise ratios. By comparing these estimates to the corresponding distances derived from fitting all available photometry for each object, we demonstrate that our method is robust to the relative temporal sampling of the provided spectroscopic and photometric information, and to a broad range of light-curve shapes that lie within the domain of standard width-luminosity relations. Indeed, the median residual (and asymmetric scatter) between SDM distances derived from two-passband photometry and conventional light-curve-derived distances that utilise all available photometry is $0.013_{-0.143}^{+0.154}$ mag. Moreover, we find that the time of maximum brightness and light-curve shape (both of which are spectroscopically derived in our method) are only minimally responsible for the observed scatter. In a companion paper, we apply the SDM to a large number of sparsely observed SNe Ia as part of a cosmological study.
The Type~Ia supernova (SN~Ia) 2016coj in NGC 4125 (redshift $z=0.004523$) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before $B$-band maximum). Our first detection (pre-discovery ) is merely $0.6pm0.5$ day after the FFLT, making SN 2016coj one of the earliest known detections of a SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but with a high velocity of ion{Si}{2} $lambda$6355 ($sim 12,600$,kms around peak brightness). The ion{Si}{2} $lambda$6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity ($M_B approx -18.9 pm 0.2$ mag), and it reaches a $B$-band maximum about16.0~d after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na~I~D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the ion{Si}{2} line polarization is quite strong ($sim 0.9% pm 0.1%$) at peak brightness.
We present extensive ground-based and $Hubble~Space~Telescope$ ($HST$) photometry of the highly reddened, very nearby type Ia supernova (SN Ia) 2014J in M82, covering the phases from 9 days before to about 900 days after the $B$-band maximum. SN 2014 J is similar to other normal SNe Ia near the maximum light, but it shows flux excess in the $B$ band in the early nebular phase. This excess flux emission can be due to light scattering by some structures of circumstellar materials located at a few 10$^{17}$ cm, consistent with a single degenerate progenitor system or a double degenerate progenitor system with mass outflows in the final evolution or magnetically driven winds around the binary system. At t$sim$+300 to $sim$+500 days past the $B$-band maximum, the light curve of SN 2014J shows a faster decline relative to the $^{56}$Ni decay. Such a feature can be attributed to the significant weakening of the emission features around [Fe III] $lambda$4700 and [Fe II] $lambda$5200 rather than the positron escape as previously suggested. Analysis of the $HST$ images taken at t$>$600 days confirms that the luminosity of SN 2014J maintains a flat evolution at the very late phase. Fitting the late-time pseudo-bolometric light curve with radioactive decay of $^{56}$Ni, $^{57}$Ni and $^{55}$Fe isotopes, we obtain the mass ratio $^{57}$Ni/$^{56}$Ni as $0.035 pm 0.011$, which is consistent with the corresponding value predicted from the 2D and 3D delayed-detonation models. Combined with early-time analysis, we propose that delayed-detonation through single degenerate scenario is most likely favored for SN 2014J.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا