ترغب بنشر مسار تعليمي؟ اضغط هنا

Accretion disk dynamo as the trigger for X-ray binary state transitions

85   0   0.0 ( 0 )
 نشر من قبل Philip Armitage
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetohydrodynamic accretion disk simulations suggest that much of the energy liberated by the magnetorotational instability (MRI) can be channeled into large-scale toroidal magnetic fields through dynamo action. Under certain conditions, this field can dominate over gas and radiation pressure in providing vertical support against gravity, even close to the midplane. Using a simple model for the creation of this field, its buoyant rise, and its coupling to the gas, we show how disks could be driven into this magnetically dominated state and deduce the resulting vertical pressure and density profiles. Applying an established criterion for MRI to operate in the presence of a toroidal field, we show that magnetically supported disks can have two distinct MRI-active regions, separated by a dead zone where local MRI is suppressed, but where magnetic energy continues to flow upward from the dynamo region below. We suggest that the relative strengths of the MRI zones, and the local poloidal flux, determine the spectral states of X-ray binaries. Specifically, intermediate and hard accretion states occur when MRI is triggered in the hot, upper zone of the corona, while disks in soft states do not develop the upper MRI zone. We discuss the conditions under which various transitions should take place and speculate on the relationship of dynamo activity to the various types of quasi-periodic oscillations that sometimes appear in the hard spectral components. The model also explains why luminous accretion disks in the soft state show no signs of the thermal/viscous instability predicted by standard alpha models.



قيم البحث

اقرأ أيضاً

128 - Xinwu Cao , 2021
The hard to soft state transition of the outbursts in X-ray binaries (XRBs) is triggered by the rising of the mass accretion rate due to the disk instability. In order to explain the observed correlation between the hard X-ray transition luminosity a nd the soft X-ray peak luminosity in the soft state, we construct a magnetic disk-outflow model for the state transition in XRBs. We assume that the large-scale magnetic field in the outer thin disk is formed through inverse cascade of small-scale dynamo generated field, and it is then advected by the inner advection dominated accretion flow (ADAF), which accelerates a fraction of the gas into the outflows. During the outbursts, the heating front moves inwards, and the field strength at the heating front of the outer disk is proportional to the accretion rate of the disk. Much angular momentum of the inner ADAF is carried away by the outflows for a stronger magnetic field, which leads to a high radial velocity of the ADAF. This makes the critical mass accretion rate of the ADAF increases with the field strength, and it therefore leads to a correlation between transition luminosity and the peak luminosity in the thermal state. We found that the values of the viscosity parameter $alpha$ of the neutron star XRBs are systematically higher for those of the black hole (BH) XRBs ($alphasim 0.05-0.15$ for BHs, and $alphasim 0.15-0.4$ for neutron stars). Our model predicts the transition luminosity may be higher than the peak luminosity provided $alpha$ is sufficiently high, which is able to explain a substantial fraction of outbursts in BHXRBs not reaching the thermally dominant accretion state.
145 - A. Riols , F. Rincon , C. Cossu 2016
In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo process involving the magnetorotational instability (MRI). High-resolution simulations exhibit a tendency towards statistical self-organi zation of MRI dynamo turbulence into large-scale cyclic dynamics. Understanding the physical origin of these structures, and whether they can be sustained and transport angular momentum efficiently in astrophysical conditions, represents a significant theoretical challenge. The discovery of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has notably served to highlight the role of turbulent magnetic diffusion in the seeming decay of the dynamics at low magnetic Prandtl number Pm (magnetic diffusivity larger than viscosity), a common regime in accretion disks. The connection between these simple structures and the statistical organization reported in turbulent simulations remained elusive, though. Here, we report the numerical discovery in moderate aspect ratio Keplerian shearing boxes of new periodic, incompressible, three-dimensional nonlinear MRI dynamo solutions with a larger dynamical complexity reminiscent of such simulations. These chimera cycles are characterized by multiple MRI-unstable dynamical stages, but their basic physical principles of self-sustainment are nevertheless identical to those of simpler cycles found in azimuthally elongated boxes. In particular, we find that they are not sustained at low Pm either due to subcritical turbulent magnetic diffusion. These solutions offer a new perspective into the transition from laminar to turbulent instability-driven dynamos, and may prove useful to devise improved statistical models of turbulent accretion disk dynamos.
We analyze three prototypical black hole (BH) X-ray binaries (XRBs), 4u1630, gro1655 and h1743, in an effort to systematically understand the intrinsic state transition of the observed accretion-disk winds between windon and windoff states by utilizi ng state-of-the-art {it Chandra}/HETGS archival data from multi-epoch observations. We apply our magnetically-driven wind models in the context of magnetohydrodynamic (MHD) calculations to constrain their (1) global density slope ($p$), (2) their density ($n_{17}$) at the foot point of the innermost launching radius and (3) the abundances of heavier elements ($A_{rm Fe,S,Si}$). Incorporating the MHD winds into {tt xstar} photoionization calculations in a self-consistent manner, we create a library of synthetic absorption spectra given the observed X-ray continua. Our analysis clearly indicates a characteristic bi-modal transition of multi-ion X-ray winds; i.e. the wind density gradient is found to steepen (from $p sim 1.2-1.4$ to $sim 1.4-1.5$) while its density normalization declines as the source transitions from windon to windoff state. The model implies that the ionized wind {it remains physically present} even in windoff state, despite its absent appearance in the observed spectra. Super-solar abundances for heavier elements are also favored. Our global multi-ion wind models, taking into account soft X-ray ions as well as Fe K absorbers, show that the internal wind condition plays an important role in wind transitions besides photoionization changes. % Simulated {it XRISM}/Resolve and {it Athena}/X-IFU spectra are presented to demonstrate a high fidelity of the multi-ion wind model for better understanding of these powerful ionized winds in the coming decades.
We study X-ray spectra from the outburst rise of the accreting black-hole binary MAXI J1820+070. We find that models having the disk inclinations within those of either the binary or the jet imply significant changes of the accretion disk inner radiu s during the luminous part of the hard spectral state, with that radius changing from $>$100 to $sim$10 gravitational radii. The main trend is a decrease with the decreasing spectral hardness. Our analysis requires the accretion flow to be structured, with at least two components with different spectral slopes. The harder component dominates the bolometric luminosity and produces strong, narrow, X-ray reflection features. The softer component is responsible for the underlying broader reflection features. The data are compatible with the harder component having a large scale height, located downstream the disk truncation radius, and reflecting mostly from remote parts of the disk. The softer component forms a corona above the disk up to some transition radius. Our findings can explain the changes of the characteristic variability time scales, found in other works, as being driven by the changes of the disk characteristic radii.
1RXS J180408.9-342058 is a transient neutron star low-mass X-ray binary that exhibited a bright accretion outburst in 2015. We present Nustar, Swift, and Chandra observations obtained around the peak of this outburst. The source was in a soft X-ray s pectral state and displayed an X-ray luminosity of Lx~(2-3)E37 (D/5.8 kpc)^2 erg cm-2 (0.5-10 keV). The Nustar data reveal a broad Fe-K emission line that we model as relativistically broadened reflection to constrain the accretion geometry. We found that the accretion disk is viewed at an inclination of i~27-35 degrees and extended close to the neutron star, down to Rin~5-7.5 gravitational radii (~11-17 km). This inner disk radius suggests that the neutron star magnetic field strength is B<2E8 G. We find a narrow absorption line in the Chandra/HEG data at an energy of ~7.64 keV with a significance of ~4.8 sigma. This feature could correspond to blue-shifted Fe xxvi and arise from an accretion disk wind, which would imply an outflow velocity of v~0.086c (~25800 km s-1). However, this would be extreme for an X-ray binary and it is unclear if a disk wind should be visible at the low inclination angle that we infer from our reflection analysis. Finally, we discuss how the X-ray and optical properties of 1RXS J180408.9-342058 are consistent with a relatively small (Porb<3 hr) binary orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا