ﻻ يوجد ملخص باللغة العربية
We study idempotents in intensional Martin-Lof type theory, and in particular the question of when and whether they split. We show that in the presence of propositional truncation and Voevodskys univalence axiom, there exist idempotents that do not split; thus in plain MLTT not all idempotents can be proven to split. On the other hand, assuming only function extensionality, an idempotent can be split if and only if its witness of idempotency satisfies one extra coherence condition. Both proofs are inspired by parallel results of Lurie in higher category theory, showing that ideas from higher category theory and homotopy theory can have applications even in ordinary MLTT. Finally, we show that although the witness of idempotency can be recovered from a splitting, the one extra coherence condition cannot in general; and we construct the type of fully coherent idempotents, by splitting an idempotent on the type of partially coherent ones. Our results have been formally verified in the proof assistant Coq.
We present polygraphic programs, a subclass of Albert Burronis polygraphs, as a computational model, showing how these objects can be seen as first-order functional programs. We prove that the model is Turing complete. We use polygraphic interpretati
We describe categorical models of a circuit-based (quantum) functional programming language. We show that enriched categories play a crucial role. Following earlier work on QWire by Paykin et al., we consider both a simple first-order linear language
We implement in the formal language of homotopy type theory a new set of axioms called cohesion. Then we indicate how the resulting cohesive homotopy type theory naturally serves as a formal foundation for central concepts in quantum gauge field theo
We generalise sheaf models of intuitionistic logic to univalent type theory over a small category with a Grothendieck topology. We use in a crucial way that we have constructive models of univalence, that can then be relativized to any presheaf model
We define in the setting of homotopy type theory an H-space structure on $mathbb S^3$. Hence we obtain a description of the quaternionic Hopf fibration $mathbb S^3hookrightarrowmathbb S^7twoheadrightarrowmathbb S^4$, using only homotopy invariant tools.