ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical evidence for a Weyl semimetal state in pyrochlore Eu2Ir2O7

127   0   0.0 ( 0 )
 نشر من قبل Andrei B. Sushkov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A Weyl semimetallic state with pairs of nondegenerate Dirac cones in three dimensions was recently predicted to occur in the antiferromagnetic state of the pyrochlore iridates. Here, we show that the THz optical conductivity and temperature dependence of free carriers in the pyrochlore Eu2Ir2O7 match the predictions for a Weyl semimetal and suggest novel Dirac liquid behavior. The interband optical conductivity vanishes continuously at low frequencies signifying a semimetal. The metal-insulator transition at T_N = 110 K is manifested in the Drude spectral weight, which is independent of temperature in the metallic phase, and which decreases smoothly in the ordered phase. The temperature dependence of the free carrier weight below T_N is in good agreement with theoretical predictions for a Dirac material. The data yield a Fermi velocity v_F=4x10^7 cm/s, a logarithmic renormalization scale Lambda_L=600 K, and require a Fermi temperature of T_F=100 K associated with residual unintentional doping to account for the low temperature optical response and dc resistivity.



قيم البحث

اقرأ أيضاً

Electrons in the pyrochore iridates experience a large interaction energy in addition to a strong spin-orbit interaction. Both features make the iridates promising for realizing novel states such as the Topological Mott Insulator. The pyrochlore irid ate Eu$_2$Ir$_2$O$_7$ shows a metal-insulator transition at $T_N sim$ 120 K below which a magnetically ordered state develops. Using torque magnetometry, we uncover a highly unusual magnetic response. A magnetic field $bf H$ applied in its $a$-$b$ plane produces a nonlinear magnetization $M_perp$ orthogonal to the plane. $M_perp$ displays a $d$-wave field-angle pattern consistent with octupolar order, with a handedness dictated by field cooling, leading to symmetry breaking of the chirality $omega$. A surprise is that the lobe orientation of the $d$-wave pattern is sensitive to the direction of the field when the sample is field-cooled below $T_N$, suggestive of an additional order parameter $eta$ already present at 300 K.
101 - Hao Su , Benchao Gong , Wujun Shi 2019
Magnetic Weyl semimetals (WSMs) bearing long-time pursuing are still very rare. We herein identified magnetic exchange induced Weyl state in EuCd2Sb2, a semimetal in type IV magnetic space group, via performing high magnetic field (B) magneto-transpo rt measurements and ab initio calculations. For the A-type antiferromagnetic (AFM) structure of EuCd2Sb2, external B larger than 3.2 T can align Eu spins to be fully polarized along the c-axis and consequently drive the system into a ferromagnetic (FM) state. Measurements up to B ~ 55 T revealed a striking Shubnikov-de Hass oscillation imposed by a nontrivial Berry phase. We unveiled a phase transition from a small-gap AFM topological insulator into a FM WSM in which Weyl points emerged along the {Gamma}-Z path. Fermi arcs on (100) and (010) surfaces are also revealed. The results pave a way towards realization of various topological states in a single material through magnetic exchange manipulation.
Motivated by the proposal of a Weyl-semimetal phase in pyrochlore iridates, we consider a Hubbard-type model on the pyrochlore lattice. To shed light on the question as to why such a state has not been observed experimentally, its robustness is analy zed. On the one hand, we study the possible phases when the system is doped. Magnetic frustration favors several phases with magnetic and charge order that do not occur at half filling, including additional Weyl-semimetal states close to quarter filling. On the other hand, we search for density waves that break translational symmetry and destroy the Weyl-semimetal phase close to half filling. The uniform Weyl semimetal is found to be stable, which we attribute to the low density of states close to the Fermi energy.
Topological quantum materials, including topological insulators and superconductors, Dirac semimetals and Weyl semimetals, have attracted much attention recently for their unique electronic structure, spin texture and physical properties. Very lately , a new type of Weyl semimetals has been proposed where the Weyl Fermions emerge at the boundary between electron and hole pockets in a new phase of matter, which is distinct from the standard type I Weyl semimetals with a point-like Fermi surface. The Weyl cone in this type II semimetals is strongly tilted and the related Fermi surface undergos a Lifshitz transition, giving rise to a new kind of chiral anomaly and other new physics. MoTe2 is proposed to be a candidate of a type II Weyl semimetal; the sensitivity of its topological state to lattice constants and correlation also makes it an ideal platform to explore possible topological phase transitions. By performing laser-based angle-resolved photoemission (ARPES) measurements with unprecedentedly high resolution, we have uncovered electronic evidence of type II semimetal state in MoTe2. We have established a full picture of the bulk electronic states and surface state for MoTe2 that are consistent with the band structure calculations. A single branch of surface state is identified that connects bulk hole pockets and bulk electron pockets. Detailed temperature-dependent ARPES measurements show high intensity spot-like features that is ~40 meV above the Fermi level and is close to the momentum space consistent with the theoretical expectation of the type II Weyl points. Our results constitute electronic evidence on the nature of the Weyl semimetal state that favors the presence of two sets of type II Weyl points in MoTe2.
In a type I Dirac or Weyl semimetal, the low energy states are squeezed to a single point in momentum space when the chemical potential Ef is tuned precisely to the Dirac/Weyl point. Recently, a type II Weyl semimetal was predicted to exist, where th e Weyl states connect hole and electron bands, separated by an indirect gap. This leads to unusual energy states, where hole and electron pockets touch at the Weyl point. Here we present the discovery of a type II topological Weyl semimetal (TWS) state in pure MoTe2, where two sets of WPs (W2+-, W3+-) exist at the touching points of electron and hole pockets and are located at different binding energies above Ef. Using ARPES, modeling, DFT and calculations of Berry curvature, we identify the Weyl points and demonstrate that they are connected by different sets of Fermi arcs for each of the two surface terminations. We also find new surface track states that form closed loops and are unique to type II Weyl semimetals. This material provides an exciting, new platform to study the properties of Weyl fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا