Comparison of pressurized sulfur hydride with conventional superconductors


الملخص بالإنكليزية

A recent report that sulfur hydride under pressure is an electron-phonon superconductor with a Tc of 190 K has been met with much excitement although it is yet to be confirmed. Based on several electron-phonon spectral density functions already available from density functional theory, we find that the electron-phonon spectrum is near optimum for Tc with a particularly large value of its characteristic phonon energy omega_ln which is due to the small hydrogen mass. We find that the thermodynamic universal BCS ratios are near those for Pb and Nb3Sn. We suggest that optical measurements could be a useful tool to establish the existence and nature of the superconductivity in this system. Conventional superconductors are in the impurity-dominated dirty limit. By contrast sulfur hydride will be in the clean limit because of its large energy gap scale. The AC optical conductivity will display distinct and separate signatures of the superconducting gap in the low-energy impurity-dominated range of the optical spectrum and additional phonon structures at higher energies where the clean limit applies.

تحميل البحث