ﻻ يوجد ملخص باللغة العربية
Recent studies of active galactic nuclei (AGN) found a statistical inverse linear scaling between the X-ray normalized excess variance $sigma_{rm rms}^2$ (variability amplitude) and the black hole mass spanning over $M_{rm BH}=10^6- 10^9 M_{odot}$. Being suggested to have a small scatter, this scaling relation may provide a novel method to estimate the black hole mass of AGN. However, a question arises as to whether this relation can be extended to the low-mass regime below $sim10^6 M_{odot}$. If confirmed, it would provide an efficient tool to search for AGN with low-mass black holes using X-ray variability. This paper presents a study of the X-ray excess variances for a sample of AGN with black hole masses in the range of $10^5- 10^6 M_{odot}$ observed with {it XMM-Newton} and {it ROSAT}, including data both from the archives and from newly preformed observations. It is found that the relation is no longer a simple extrapolation of the linear scaling; instead, the relation starts to flatten at $sim10^6 M_{odot}$ toward lower masses. Our result is consistent with the recent finding of citet{L15}. Such a flattening of the $M_{rm BH}-sigma_{rm rms}^2$ relation is actually expected from the shape of the power spectrum density of AGN, whose break frequency is inversely scaled with the mass of black holes.
We carried out a systematic analysis of time lags between X-ray energy bands in a large sample (32 sources) of unabsorbed, radio quiet active galactic nuclei (AGN), observed by XMM-Newton. The analysis of X-ray lags (up to the highest/shortest freque
A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and Black Hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGN) appears very tight, with an intrinsic dispersion of 0.20 dex. T
We have investigated the relationship between the 2-10 keV X-ray variability amplitude and black hole mass for a sample of 46 radio-quiet active galactic nuclei observed by ASCA. Thirty-three of the objects in our sample exhibited variability over a
We present a detailed study of the optical spectroscopic properties of 12 active galactic nuclei (AGNs) with candidate low-mass black holes (BHs) selected by Kamizasa et al. through rapid X-ray variability. The high-quality, echellette Magellan spect
We consider a black hole (BH) density cusp in a nuclear star cluster (NSC) hosting a supermassive back hole (SMBH) at its center. Assuming the stars and BHs inside the SMBH sphere of influence are mass-segregated, we calculate the number of BHs that