ترغب بنشر مسار تعليمي؟ اضغط هنا

Einstein Probe - a small mission to monitor and explore the dynamic X-ray Universe

245   0   0.0 ( 0 )
 نشر من قبل Weimin Yuan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Einstein Probe is a small mission dedicated to time-domain high-energy astrophysics. Its primary goals are to discover high-energy transients and to monitor variable objects in the $0.5-4~$keV X-rays, at higher sensitivity by one order of magnitude than those of the ones currently in orbit. Its wide-field imaging capability, featuring a large instantaneous field-of-view ($60^circ times60^circ$, $sim1.1$sr), is achieved by using established technology of micro-pore (MPO) lobster-eye optics, thereby offering unprecedentedly high sensitivity and large Grasp. To complement this powerful monitoring ability, it also carries a narrow-field, sensitive follow-up X-ray telescope based on the same MPO technology to perform follow-up observations of newly-discovered transients. Public transient alerts will be downlinked rapidly, so as to trigger multi-wavelength follow-up observations from the world-wide community. Over three of its 97-minute orbits almost the entire night sky will be sampled, with cadences ranging from 5 to 25 times per day. The scientific objectives of the mission are: to discover otherwise quiescent black holes over all astrophysical mass scales by detecting their rare X-ray transient flares, particularly tidal disruption of stars by massive black holes at galactic centers; to detect and precisely locate the electromagnetic sources of gravitational-wave transients; to carry out systematic surveys of X-ray transients and characterize the variability of X-ray sources. Einstein Probe has been selected as a candidate mission of priority (no further selection needed) in the Space Science Programme of the Chinese Academy of Sciences, aiming for launch around 2020.



قيم البحث

اقرأ أيضاً

The Cadmium Zinc Telluride Imager (CZTI) is an imaging instrument onboard AstroSat. This instrument operates as a nearly open all-sky detector above ~60 keV, making possible long integrations irrespective of the spacecraft pointing. We present a tech nique based on the AstroSat-CZTI data to explore the hard X-ray characteristics of the $gamma$-ray pulsar population. We report highly significant ($sim 30sigma$) detection of hard X-ray (60--380 keV) pulse profile of the Crab pulsar using $sim$5000 ks of CZTI observations within 5 to 70 degrees of Crab position in the sky, using a custom algorithm developed by us. Using Crab as our test source, we estimate the off-axis sensitivity of the instrument and establish AstroSat-CZTI as a prospective tool in investigating hard X-ray characteristics of $gamma$-ray pulsars as faint as 10 mCrab.
We present motivations for and study feasibility of a small, rapid optical to IR response gamma ray burst (GRB) space observatory. By analyzing existing GRB data, we give realistic detection rates for X-ray and optical/IR instruments of modest size u nder actual flight conditions. Given new capabilities of fast optical/IR response (about 1 s to target) and simultaneous multi-band imaging, such an observatory can have a reasonable event rate, likely leading to new science. Requiring a Swift-like orbit, duty cycle, and observing constraints, a Swift-BAT scaled down to 190 square cm of detector area would still detect and locate about 27 GRB per yr. for a trigger threshold of 6.5 sigma. About 23 percent of X-ray located GRB would be detected optically for a 10 cm diameter instrument (about 6 per yr. for the 6.5 sigma X-ray trigger).
345 - Weimin Yuan 2015
This white paper is a summarising report of the Forum on monitoring the transient X-ray Universe in the multi-messenger era organized by the International Space Science Institute in Beijing (ISSI-BJ) on May 6-7, 2014. Time-domain astronomy will enter a golden era towards the end of this decade with the advent of major facilities across the electromagnetic spectrum and in the multi-messenger realms of gravitational wave and neutrino. In the soft X-ray regime, the novel micro-pore lobster-eye optics provides a promising technology to realise, for the first time, focusing X-ray optics for wide-angle monitors to achieve a good combination of sensitivity and wide field of view. In this context, Einstein Probe - a soft X-ray all-sky monitor - has been proposed and selected as a candidate mission of priority in the space science programme of the Chinese Academy of Sciences. This report summarises the most important science developments in this field towards 2020 and beyond and how to achieve them technologically, which were discussed at this brainstorming forum. It also introduces briefly the Einstein Probe mission, including its key science goals and mission definition, as well as some of the key technological issues.
128 - Keith Jahoda 2019
The X-ray Polarization Probe (XPP) is a second generation X-ray polarimeter following up on the Imaging X-ray Polarimetry Explorer (IXPE). The XPP will offer true broadband polarimetery over the wide 0.2-60 keV bandpass in addition to imaging polarim etry from 2-8 keV. The extended energy bandpass and improvements in sensitivity will enable the simultaneous measurement of the polarization of several emission components. These measurements will give qualitatively new information about how compact objects work, and will probe fundamental physics, i.e. strong-field quantum electrodynamics and strong gravity.
Over the next decade, we can expect time domain astronomy to flourish at optical and radio wavelengths. In parallel with these efforts, a dedicated transient machine operating at higher energies (X-ray band through soft gamma-rays) is required to rev eal the unique subset of events with variable emission predominantly visible above 100 eV. Here we focus on the transient phase space never yet sampled due to the lack of a sensitive, wide-field and triggering facility dedicated exclusively to catching high energy transients and enabling rapid coordinated multi-wavelength follow-up. We first describe the advancements in our understanding of known X-ray transients that can only be enabled through such a facility and then focus on the classes of transients theoretically predicted to be out of reach of current detection capabilities. Finally there is the exciting opportunity of revealing new classes of X-ray transients and unveiling their nature through coordinated follow-up observations at longer wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا