ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation and Evolution of Binary Asteroids

159   0   0.0 ( 0 )
 نشر من قبل Kevin Walsh
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Satellites of asteroids have been discovered in nearly every known small body population, and a remarkable aspect of the known satellites is the diversity of their properties. They tell a story of vast differences in formation and evolution mechanisms that act as a function of size, distance from the Sun, and the properties of their nebular environment at the beginning of Solar System history and their dynamical environment over the next 4.5 Gyr. The mere existence of these systems provides a laboratory to study numerous types of physical processes acting on asteroids and their dynamics provide a valuable probe of their physical properties otherwise possible only with spacecraft. Advances in understanding the formation and evolution of binary systems have been assisted by: 1) the growing catalog of known systems, increasing from 33 to nearly 250 between the Merline et al. (2002) Asteroids III chapter and now, 2) the detailed study and long-term monitoring of individual systems such as 1999 KW4 and 1996 FG3, 3) the discovery of new binary system morphologies and triple systems, 4) and the discovery of unbound systems that appear to be end-states of binary dynamical evolutionary paths. Specifically for small bodies (diameter smaller than 10 km), these observations and discoveries have motivated theoretical work finding that thermal forces can efficiently drive the rotational disruption of small asteroids. Long-term monitoring has allowed studies to constrain the systems dynamical evolution by the combination of tides, thermal forces and rigid body physics. The outliers and split pairs have pushed the theoretical work to explore a wide range of evolutionary end-states.



قيم البحث

اقرأ أيضاً

Most meteorites are fragments from recent collisions experienced in the asteroid belt. In such a hyper-velocity collision, the smaller collision partner is destroyed, whereas a crater on the asteroid is formed or it is entirely disrupted, too. The pr esent size distribution of the asteroid belt suggests that an asteroid with 100 km radius is encountered $10^{14}$ times during the lifetime of the Solar System by objects larger than 10 cm in radius; the formed craters cover the surface of the asteroid about 100 times. We present a Monte Carlo code that takes into account the statistical bombardment of individual infinitesimally small surface elements, the subsequent compaction of the underlying material, the formation of a crater and a regolith layer. For the entire asteroid, 10,000 individual surface elements are calculated. We compare the ejected material from the calculated craters with the shock stage of meteorites with low petrologic type and find that these most likely stem from smaller parent bodies that do not possess a significant regolith layer. For larger objects, which accrete a regolith layer, a prediction of the thickness depending on the largest visible crater can be made. Additionally, we compare the crater distribution of an object initially 100 km in radius with the shape model of the asteroid (21) Lutetia, assuming it to be initially formed spherical with a radius that is equal to its longest present ellipsoid length. Here, we find the shapes of both objects to show resemblance to each other.
The origins of irregular satellites of the giant planets are an important piece of the giant puzzle that is the theory of Solar System formation. It is well established that they are not in situ formation objects, around the planet, as are believed t o be the regular ones. Then, the most plausible hypothesis to explain their origins is that they formed elsewhere and were captured by the planet. However, captures under restricted three-body problem dynamics have temporary feature, which makes necessary the action of an auxiliary capture mechanism. Nevertheless, there not exist one well established capture mechanism. In this work, we tried to understand which aspects of a binary-asteroid capture mechanism could favor the permanent capture of one member of a binary asteroid. We performed more than eight thousand numerical simulations of capture trajectories considering the four-body dynamical system Sun, Jupiter, Binary-asteroid. We restricted the problem to the circular planar prograde case, and time of integration to 10^4 years. With respect to the binary features, we noted that 1) tighter binaries are much more susceptible to produce permanent captures than the large separation-ones. We also found that 2) the permanent capture probability of the minor member of the binary is much more expressive than the major body permanent capture probability. On the other hand, among the aspects of capture-disruption process, 4) a pseudo eastern-quadrature was noted to be a very likely capture angular configuration at the instant of binary disruptions. In addition, we also found that the 5) capture probability is higher for binary asteroids which disrupt in an inferior-conjunction with Jupiter. These results show that the Sun plays a very important role on the capture dynamic of binary asteroids.
Wide binary stars with similar components hosting planets provide a favorable opportunity for exploring the star-planet chemical connection. We perform a detailed characterization of the solar-type stars in the WASP-160 binary system. No planet has b een reported yet around WASP-160A while WASP-160B is known to host a transiting Saturn-mass planet, WASP-160B b. For this planet, we also derive updated properties from both literature and new observations. Furthermore, using TESS photometry, we constrain the presence of transiting planets around WASP-160A and additional ones around WASP-160B. The stellar characterization includes, for the first time, the computation of high-precision differential atmospheric and chemical abundances of 25 elements based on high-quality Gemini-GRACES spectra. Our analysis reveals evidence of a correlation between the differential abundances and the condensation temperatures of the elements. In particular, we find both a small but significant deficit of volatiles and an enhancement of refractory elements in WASP-160B relative to WASP-160A. After WASP-94, this is the second stellar pair among the shortlist of planet-hosting binaries showing this kind of peculiar chemical pattern. Although we discuss several plausible planet formation and evolution scenarios for WASP-160A and B that could explain the observed chemical pattern, none of them can be conclusively accepted or rejected. Future high-precision photometric and spectroscopic follow-up, as well as high-contrast imaging observations, of WASP-160A and B, might provide further constraints on the real origin of the detected chemical differences.
If the Solar system had a history of planet migration, the signature of that migration may be imprinted on the populations of asteroids and comets that were scattered in the planets wake. Here, we consider the dynamical and collisional evolution of i nner Solar system asteroids which join the Oort cloud. We compare the Oort cloud asteroid populations produced by migration scenarios based on the `Nice and `Grand Tack scenarios, as well as a null hypothesis where the planets have not migrated, to the detection of one such object, C/2014 S3 (PANSTARRS). Our simulations find that the discovery of C/2014 S3 (PANSTARRS) only has a greater than one percent chance of occurring if the Oort cloud asteroids evolved on to Oort cloud orbits when the Solar system was not more than about one million years old, as this early transfer to the Oort cloud is necessary to keep the amount of collisional evolution low. We argue this only occurs when a giant (greater than thirty Earth masses) planet orbits at 1 ~ 2 au, and thus our results strongly favour a `Grand Tack-like migration having occurred early in the Solar systems history.
By now, observations of exoplanets have found more than 50 binary star systems hosting 71 planets. We expect these numbers to increase as more than 70% of the main sequence stars in the solar neighborhood are members of binary or multiple systems. Th e planetary motion in such systems depends strongly on both the parameters of the stellar system (stellar separation and eccentricity) and the architecture of the planetary system (number of planets and their orbital behaviour). In case a terrestrial planet moves in the so-called habitable zone (HZ) of its host star, the habitability of this planet depends on many parameters. A crucial factor is certainly the amount of water. We investigate in this work the transport of water from beyond the snow-line to the HZ in a binary star system and compare it to a single star system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا