ﻻ يوجد ملخص باللغة العربية
We present significant evidence of halo assembly bias for SDSS redMaPPer galaxy clusters in the redshift range $[0.1, 0.33]$. By dividing the 8,648 clusters into two subsamples based on the average member galaxy separation from the cluster center, we first show that the two subsamples have very similar halo mass of $M_{rm 200m}simeq 1.9times 10^{14}~h^{-1}M_odot$ based on the weak lensing signals at small radii $R<sim 10~h^{-1}{rm Mpc}$. However, their halo bias inferred from both the large-scale weak lensing and the projected auto-correlation functions differs by a factor of $sim$1.5, which is a signature of assembly bias. The same bias hypothesis for the two subsamples is excluded at 2.5$sigma$ in the weak lensing and 4.4$sigma$ in the auto-correlation data, respectively. This result could bring a significant impact on both galaxy evolution and precision cosmology.
The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f_NL, offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the
The two-point clustering of dark matter halos is influenced by halo properties besides mass, a phenomenon referred to as halo assembly bias. Using the depth of the gravitational potential well, $V_{rm max}$, as our secondary halo property, in this pa
Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by
One of the main predictions of excursion set theory is that the clustering of dark matter haloes only depends on halo mass. However, it has been long established that the clustering of haloes also depends on other properties, including formation time
We study the effect of large-scale tidal fields on internal halo properties using a set of N-body simulations. We measure significant cross-correlations between large-scale tidal fields and several non-scalar halo properties: shapes, velocity dispers