ﻻ يوجد ملخص باللغة العربية
Located in the Perseus cluster, NGC 1271 is an early-type galaxy with a small effective radius of 2.2 kpc and a large stellar velocity dispersion of 276 km/s for its K-band luminosity of 8.9x10^{10} L_sun. We present a mass measurement for the black hole in this compact, high-dispersion galaxy using observations from the integral field spectrograph NIFS on the Gemini North telescope assisted by laser guide star adaptive optics, large-scale integral field unit observations with PPAK at the Calar Alto Observatory, and Hubble Space Telescope WFC3 imaging observations. We are able to map out the stellar kinematics on small spatial scales, within the black hole sphere of influence, and on large scales that extend out to four times the galaxys effective radius. We find that the galaxy is rapidly rotating and exhibits a sharp rise in the velocity dispersion. Through the use of orbit-based stellar dynamical models, we determine that the black hole has a mass of (3.0^{+1.0}_{-1.1}) x 10^9 M_sun and the H-band stellar mass-to-light ratio is 1.40^{+0.13}_{-0.11} M_sun/L_sun (1-sigma uncertainties). NGC 1271 occupies the sparsely-populated upper end of the black hole mass distribution, but is very different from the Brightest Cluster Galaxies (BCGs) and giant elliptical galaxies that are expected to host the most massive black holes. Interestingly, the black hole mass is an order of magnitude larger than expectations based on the galaxys bulge luminosity, but is consistent with the mass predicted using the galaxys bulge stellar velocity dispersion. More compact, high-dispersion galaxies need to be studied using high spatial resolution observations to securely determine black hole masses, as there could be systematic differences in the black hole scaling relations between these types of galaxies and the BCGs/giant ellipticals, thereby implying different pathways for black hole and galaxy growth.
We report the discovery of a ultraluminous X-ray source (ULX; CXO J133815.6+043255) in NGC 5252. This ULX is an off-nuclear point-source, which is 22$^{primeprime}$ away from the center of NGC 5252, and has an X-ray luminosity of 1.5 $times$ $10^{40}
Observations of local galaxies harbouring supermassive black holes (BHs) of anomalously high mass, M_BH, relative to their stellar mass, M_star, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We st
The existence of binary supermassive black holes (SBHs) is predicted by models of hierarchical galaxy formation. To date, only a single binary SBH has been imaged, at a projected separation of 7.3 parsecs. Here we report the detection of a candidate
We present our mass estimate of the central black hole in the isolated spiral galaxy NGC 4414. Using natural guide star adaptive optics assisted observations with the Gemini Near-Infrared Integral Field Spectrometer (NIFS) and the natural seeing Gemi
We determine the mass of the nuclear black hole ($M$) in NGC 3706, an early type galaxy with a central surface brightness minimum arising from an apparent stellar ring, which is misaligned with respect to the galaxys major axis at larger radii. We fi