ﻻ يوجد ملخص باللغة العربية
We propose a simple mean-field ansatz to study phase transitions from a topological phase to a trivial phase. We probe the efficiency of this approach by considering the string-net model in the presence of a string tension for any anyon theory. Such a perturbation is known to be responsible for a deconfinement-confinement phase transition which is well described by the present variational setup. We argue that mean-field results become exact in the limit of large total quantum dimension.
We consider the string-net model on the honeycomb lattice for Ising anyons in the presence of a string tension. This competing term induces a nontrivial dynamics of the non-Abelian anyonic quasiparticles and may lead to a breakdown of the topological
Heavy quark transport coefficients in a strongly coupled Quark-Gluon Plasma can be evaluated using a gauge/string duality and lattice QCD. Via this duality, one can argue that for low momenta the drag coefficient for heavy quarks is proportional to t
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension
Floquet symmetry protected topological (FSPT) phases are non-equilibrium topological phases enabled by time-periodic driving. FSPT phases of 1d chains of bosons, spins, or qubits host dynamically protected edge states that can store quantum informati
Topology in quantum matter is typically associated with gapped phases. For example, in symmetry protected topological (SPT) phases, the bulk energy gap localizes edge modes near the boundary. In this work we identify a new mechanism that leads to top