ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-correlation cosmography with HI intensity mapping

450   0   0.0 ( 0 )
 نشر من قبل Alkistis Pourtsidou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cross-correlation of a foreground density field with two different background convergence fields can be used to measure cosmographic distance ratios and constrain dark energy parameters. We investigate the possibility of performing such measurements using a combination of optical galaxy surveys and HI intensity mapping surveys, with emphasis on the performance of the planned Square Kilometre Array (SKA). Using HI intensity mapping to probe the foreground density tracer field and/or the background source fields has the advantage of excellent redshift resolution and a longer lever arm achieved by using the lensing signal from high redshift background sources. Our results show that, for our best SKA-optical configuration of surveys, a constant equation of state for dark energy can be constrained to $simeq 8%$ for a sky coverage $f_{rm sky}=0.5$ and assuming a $sigma(Omega_{rm DE})=0.03$ prior for the dark energy density parameter. We also show that using the CMB as the second source plane is not competitive, even when considering a COrE-like satellite.



قيم البحث

اقرأ أيضاً

We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST $19$-beam L -band receivers ($1.05$--$1.45$ GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters ($w_{0},w_{a}$) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is $6000,{rm deg}^2$. However, observing with larger frequency coverage at higher redshift ($0.95$--$1.35$ GHz) improves the projected errorbars on the HI power spectrum by more than $2~sigma$ confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.
384 - Alkistis Pourtsidou 2017
We explore the possibility of performing an HI intensity mapping survey with the South African MeerKAT radio telescope, which is a precursor to the Square Kilometre Array (SKA). We propose to use cross-correlations between the MeerKAT intensity mappi ng survey and optical galaxy surveys, in order to mitigate systematic effects and produce robust cosmological measurements. Our forecasts show that precise measurements of the HI signal can be made in the near future. These can be used to constrain HI and cosmological parameters across a wide range of redshift.
130 - L. Wolz , S.G. Murray , C. Blake 2018
HI intensity mapping data traces the large-scale structure matter distribution using the integrated emission of neutral hydrogen gas (HI). The cross-correlation of the intensity maps with optical galaxy surveys can mitigate foreground and systematic effects, but has been shown to significantly depend on galaxy evolution parameters of the HI and the optical sample. Previously, we have shown that the shot noise of the cross-correlation scales with the HI content of the optical samples, such that the shot noise estimation infers the average HI masses of these samples. In this article, we present an adaptive framework for the cross-correlation of HI intensity maps with galaxy samples using our implementation of the halo model formalism (Murray et al 2018, in prep) which utilises the halo occupation distribution of galaxies to predict their power spectra. We compare two HI population models, tracing the spatial halo and the galaxy distribution respectively, and present their auto- and cross-power spectra with an associated galaxy sample. We find that the choice of the HI model and the distribution of the HI within the galaxy sample have minor significance for the shape of the auto- and cross-correlations, but highly impact the measured shot noise amplitude of the estimators, a finding we confirm with simulations. We demonstrate parameter estimation of the HI halo occupation models and advocate this framework for the interpretation of future experimental data, with the prospect of determining the HI masses of optical galaxy samples via the cross-correlation shot noise.
149 - Alkistis Pourtsidou 2015
We investigate the possibility of testing Einsteins general theory of relativity (GR) and the standard cosmological model via the $E_{rm G}$ statistic using neutral hydrogen (HI) intensity mapping. We generalise the Fourier space estimator for $E_{rm G}$ to include HI as a biased tracer of matter and forecast statistical errors using HI clustering and lensing surveys that can be performed in the near future, in combination with ongoing and forthcoming optical galaxy and Cosmic Microwave Background (CMB) surveys. We find that fractional errors $< 1%$ in the $E_{rm G}$ measurement can be achieved in a number of cases and compare the ability of various survey combinations to differentiate between GR and specific modified gravity models. Measuring $E_{rm G}$ with intensity mapping and the Square Kilometre Array can provide exquisite tests of gravity at cosmological scales.
We study the clustering of HI intensity maps produced from simulations with a focus on baryonic acoustic oscillations (BAO) and the effects induced by telescope beam smoothing and foreground cleaning. We start by creating a HI catalogue at $z=1.321$ based on the Semi-Analytic Galaxy Evolution (SAGE) model applied to the UNIT simulations. With this catalogue we investigate the relation between model HI and the dark matter haloes and we also study the abundance of HI, $Omega_{rm HI}$, predicted by this model. We then create synthetic HI intensity maps with a Nearest-Grid-Point approach. In order to simulate the telescope beam effect, a Gaussian smoothing is applied on the plane perpendicular to the line of sight. The effect of foreground removal methods is simulated by exponentially damping the largest wavelength Fourier modes on the radial direction. We study the anisotropic 2-point correlation function (2PCF) $xi(r_perp,r_parallel)$ and how it is affected by the aforementioned observational effects. In order to better isolate the BAO signal, we study several 2PCF $mu$-wedges (with a restricted range of orientations $mu$) tailored to address the systematics effects and we compare them with different definitions of radial 2PCFs. Finally, we discuss our findings in the context of an SKA-like survey, finding a clear BAO signal in most of the estimators here proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا