ﻻ يوجد ملخص باللغة العربية
Quantum nonlocality is arguably among the most counter-intuitive phenomena predicted by quantum theory. In recent years, the development of an abstract theory of nonlocality has brought a much deeper understanding of the subject. In parallel, experimental progress allowed for the demonstration of quantum nonlocality in a wide range of physical systems, and brings us close to a final loophole-free Bell test. Here we combine these theoretical and experimental developments in order to explore the limits of quantum nonlocality. This approach represents a thorough test of quantum theory, and could provide evidence of new physics beyond the quantum model. Using a versatile and high-fidelity source of pairs of polarization entangled photons, we explore the boundary of quantum correlations, present the most nonlocal correlations ever reported, demonstrate the phenomenon of more nonlocality with less entanglement, and show that non-planar (and hence complex) qubit measurements can be necessary to reproduce the strong qubit correlations that we observed. Our results are in remarkable agreement with quantum predictions.
We study the nonlocal properties of states resulting from the mixture of an arbitrary entangled state rho of two d-dimensional systems and completely depolarized noise, with respective weights p and 1-p. We first construct a local model for the case
Distributed quantum metrology can enhance the sensitivity for sensing spatially distributed parameters beyond the classical limits. Here we demonstrate distributed quantum phase estimation with discrete variables to achieve Heisenberg limit phase mea
Recently, Halder emph{et al.} [S. Halder emph{et al.}, Phys. Rev. Lett. textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable
Many quantum advantages in metrology and communication arise from interferometric phenomena. Such phenomena can occur on ultrafast time scales, particularly when energy-time entangled photons are employed. These have been relatively unexplored as the
We present an entangled-state quantum cryptography system that operated for the first time in a real world application scenario. The full key generation protocol was performed in real time between two distributed embedded hardware devices, which were