ﻻ يوجد ملخص باللغة العربية
In this work, the feasibility condition of Powder-In-Tube (PIT) processed wires of Fe(Se,Te) superconductor has been investigated. We faced several technical issues that are extensively described and discussed. In particular, we tested different metals and alloys as external sheaths (Cu, Ag, Nb, Ta, Ni, Fe, cupronickel, brass) concluding that the only sheath that does not affect substantially the Fe(Se,Te) phase is Fe. On the other hand, Fe sheath introduces excess iron in the Fe(Se,Te) phase, which affects the superconducting properties; we investigated the effects of the thermal treatments and of the powder composition in order to avoid it. The maximum Jc value obtained in our samples is 4*10^2 A/cm2, comparable to other published values of PIT conductors of the 11 family. We conclude that the fabrication of Fe(Se,Te) wires by PIT method is quite challenging and other approaches should be developed.
Among the recently discovered Fe-based superconducting compounds, the (K,Ba)Fe2As2 phase is attracting large interest within the scientific community interested in conductor developments. In fact, after some years of development, critical current den
The two most common types of MgB2 conductor fabrication technique - in-situ and ex-situ - show increasing conflicts concerning the connectivity, an effective current-carrying cross-sectional area. An in-situ reaction yields a strong intergrain coupli
We report on the first local atomic structure study via the pair density function (PDF) analysis of neutron diffraction data and show a direct correlation of local coordinates to TC in the newly discovered superconducting FeSe1-xTex. The isovalent su
We demonstrate that Ta sheathed SmO1-xFxFeAs wires were successfully fabricated by the powder-in-tube (PIT) method for the first time. Structural analysis by mean of x-ray diffraction shows that the main phase of SmO1-xFxFeAs was obtained by this syn
We demonstrate that Fe sheathed LaO0.9F0.1FeAs wires with Ti as a buffer layer were successfully fabricated by the powder-in-tube (PIT) method. Comparing to the common two-step vacuum quartz tube synthesis method, the PIT method is more convenient an