ﻻ يوجد ملخص باللغة العربية
We investigate the properties in finite magnetic field of an extended anisotropic XXZ spin-1/2 model on the Kagome lattice, originally introduced by Balents, Fisher, and Girvin [Phys. Rev. B, 65, 224412 (2002)]. The magnetization curve displays plateaus at magnetization m=1/6 and 1/3 when the anisotropy is large. Using low-energy effective constrained models (quantum loop and quantum dimer models), we discuss the nature of the plateau phases, found to be crystals that break discrete rotation and/or translation symmetries. Large-scale quantum Monte-Carlo simulations were carried out in particular for the m=1/6 plateau. We first map out the phase diagram of the effective quantum loop model with an additional loop-loop interaction to find stripe order around the point relevant for the original model as well as a topological Z2 spin liquid. The existence of a stripe crystalline phase is further evidenced by measuring both standard structure factor and entanglement entropy of the original microscopic model.
We discuss the ground-state degeneracy of spin-$1/2$ kagome-lattice quantum antiferromagnets on magnetization plateaus by employing two complementary methods: the adiabatic flux insertion in closed boundary conditions and a t Hooft anomaly argument o
We report inelastic neutron scattering measurements of the spin dynamics in the layered hexagonal magnet 2H-AgNiO2 which has stacked triangular layers of antiferromagnetically-coupled Ni2+ spins (S=1) ordered in a collinear alternating stripe pattern
A preponderance of evidence suggests that the ground state of the nearest-neighbor $S = 1/2$ antiferromagnetic Heisenberg model on the kagome lattice is a gapless spin liquid. Many candidate materials for the realization of this model possess in addi
We present numerical evidence for the emergence of an extended valence bond solid (VBS) phase at $T=0$ in the kagome $S=1/2$ Heisenberg antiferromagnet with ferromagnetic further-neighbor interactions. The VBS is located at the boundary between two m
The dc-magnetization of the unique S=1/2 kagome antiferromagnet Herbertsmithite has been measured down to 0.1K. No sign of spin freezing is observed in agreement with former muSR and ac-susceptibility results. The low temperature magnetic response is