ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizations of GEM detector prototype

519   0   0.0 ( 0 )
 نشر من قبل Saikat Biswas
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At NISER-IoP detector laboratory an initiative is taken to build and test Gas Electron Multiplier (GEM) detectors for ALICE experiment. The optimisation of the gas flow rate and the long-term stability test of the GEM detector are performed. The method and test results are presented.



قيم البحث

اقرأ أيضاً

A combination Time Projection Chamber-Cherenkov prototype detector has been developed as part of the Detector R&D Program for a future Electron Ion Collider. The prototype was tested at the Fermilab test beam facility to provide a proof of principle to demonstrate that the detector is able to measure particle tracks and provide particle identification information within a common detector volume. The TPC portion consists of a 10x10x10cm3 field cage, which delivers charge from tracks to a 10x10cm2 quadruple GEM readout. Tracks are reconstructed by interpolating the hit position of clusters on an array of 2x10mm2 zigzag pads The Cherenkov component consists of a 10x10cm2 readout plane segmented into 3x3 square pads, also coupled to a quadruple GEM. As tracks pass though the drift volume of the TPC, the generated Cherenkov light is able to escape through sparsely arranged wires making up one side of the field cage, facing the CsI photocathode of the Cherenkov detector. The Cherenkov detector is thus operated in a windowless, proximity focused configuration for high efficiency. Pure CF4 is used as the working gas for both detector components, mainly due to its transparency into the deep UV, as well as its high N0. Results from the beam test, as well as results on its particle id capabilities will be discussed.
399 - M. Blatnik 2015
Cerenkov technology is often the optimal choice for particle identification in high energy particle collision applications. Typically, the most challenging regime is at high pseudorapidity (forward) where particle identification must perform well at high high laboratory momenta. For the upcoming Electron Ion Collider (EIC), the physics goals require hadron ($pi$, K, p) identification up to $sim$~50 GeV/c. In this region Cerenkov Ring-Imaging is the most viable solution. ewline The speed of light in a radiator medium is inversely proportional to the refractive index. Hence, for PID reaching out to high momenta a small index of refraction is required. Unfortunately, the lowest indices of refraction also result in the lowest light yield ($frac{dN_gamma}{dx} propto sin^2{left(theta_C right)}$) driving up the radiator length and thereby the overall detector cost. In this paper we report on a successful test of a compact RICH detector (1 meter radiator) capable of delivering in excess of 10 photoelectrons per ring with a low index radiator gas ($CF_4$). The detector concept is a natural extension of the PHENIX HBD detector achieved by adding focusing capability at low wavelength and adequate gain for high efficiency detection of single-electron induced avalanches. Our results indicate that this technology is indeed a viable choice in the forward direction of the EIC. The setup and results are described within.
Optical readout of GEM based devices by means of high granularity and low noise CMOS sensors allows to obtain very interesting tracking performance. Space resolution of the order of tens of $mu$m were measured on the GEM plane along with an energy re solution of 20%$div$30%. The main limitation of CMOS sensors is represented by their poor information about time structure of the event. In this paper, the use of a concurrent light readout by means of a suitable photomultiplier and the acquisition of the electric signal induced on the GEM electrode are exploited to provide the necessary timing informations. The analysis of the PMT waveform allows a 3D reconstruction of each single clusters with a resolution on z of 100 $mu$m. Moreover, from the PMT signals it is possible to obtain a fast reconstruction of the energy released within the detector with a resolution of the order of 25% even in the tens of keV range useful, for example, for triggering purpose.
The LHC is undergoing a high luminosity upgrade, which is set to increase the instantaneous luminosity by at least a factor of five, resulting in a higher muon flux rate in the forward region, which will overwhelm the current trigger system of the CM S experiment. The ME0, a gas electron multiplier detector, is proposed for the Phase-2 Muon System Upgrade to help increase the muon acceptance and to control the Level 1 muon trigger rate. To lower the probability of HV discharges, the ME0 was designed with GEM foils that are segmented on both sides. Initial testing of the ME0 showed substantial crosstalk between readout sectors. Here, we investigate, characterize, and quantify the crosstalk in the detector, and estimate the performance of the chamber as a result of this crosstalk via simulation of the detector dead time, efficiency loss, and frontend electronics response. The results of crosstalk via signals produced by applying a square voltage pulse directly on the readout strips of the detector with a pulser are summarized, and the efficacy of various mitigation strategies are presented. The crosstalk is a result of capacitive coupling between the readout strips on the readout board and between the readout strips and the bottom of GEM3. The crosstalk also generally follows a pattern where the largest magnitude of crosstalk is within the same azimuthal readout segment in the detector and in the nearest horizontal segments. The use of bypass capacitors and larger HV segments successfully reduce the crosstalk: we observe a maximum decrease of crosstalk in sectors previously experiencing crosstalk from $(1.66pm0.03)%$ to $(1.11pm0.02)%$ with all HV segments connected in parallel on the bottom of GEM3, with an HV low-pass filter, and an HV divider. These mitigation strategies slightly increase crosstalk $big(hspace{-0.1cm}lessapprox 0.4%big)$ in readout sectors farther away.
272 - R. P. Adak , S. Biswas , S. Das 2016
The main aim of the study is to perform the long-term stability test of gain of the single mask triple GEM detector. A simple method is used for this long- term stability test using a radioactive X-ray source with high activity. The test is continued till accumulation of charge per unit area > 12.0 mC/mm2. The details of the chamber fabrication, the test set-up, the method of measurement and the test results are presented in this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا