ﻻ يوجد ملخص باللغة العربية
We present a simulation of the long-term evolution of a Population III supernova remnant in a cosmological minihalo. Employing passive Lagrangian tracer particles, we investigate how chemical stratification and anisotropy in the explosion can affect the abundances of the first low-mass, metal-enriched stars. We find that reverse shock heating can leave the inner mass shells at entropies too high to cool, leading to carbon-enhancement in the re-collapsing gas. This hydrodynamic selection effect could explain the observed incidence of carbon-enhanced metal-poor (CEMP) stars at low metallicity. We further explore how anisotropic ejecta distributions, recently seen in direct numerical simulations of core-collapse explosions, may translate to abundances in metal-poor stars. We find that some of the observed scatter in the Population II abundance ratios can be explained by an incomplete mixing of supernova ejecta, even in the case of only one contributing enrichment event. We demonstrate that the customary hypothesis of fully-mixed ejecta clearly fails if post-explosion hydrodynamics prefers the recycling of some nucleosynthetic products over others. Furthermore, to fully exploit the stellar-archaeological program of constraining the Pop III initial mass function from the observed Pop II abundances, considering these hydrodynamical transport effects is crucial. We discuss applications to the rich chemical structure of ultra-faint dwarf satellite galaxies, to be probed in unprecedented detail with upcoming spectroscopic surveys.
The first generation of metal-free (Pop III) stars are crucial for the production of heavy elements in the earliest phase of structure formation. Their mass scale can be derived from the elemental abundance pattern of extremely metal-poor (EMP) stars
We present vanadium (V) abundances for 255 metal-poor stars, derived from high-resolution optical spectra from the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coud{e} Spectr
After the Big Bang nucleosynthesis, the first heavy element enrichment in the Universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abun
Metal enrichment by the first-generation (Pop III) stars is the very first step of the matter cycle in the structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by the Pop I
Some ancient, dim, metal-poor stars may have formed in the ashes of the first supernovae (SNe). If their chemical abundances can be reconciled with the elemental yields of specific Population III (Pop III) explosions, they could reveal the properties