ﻻ يوجد ملخص باللغة العربية
We review certain properties of confinement with added focus on the ones we study with holography. Then we discuss observables whose unique behavior can indicate the presence of confinement. Using mainly the Wilson loop in the gauge/gravity formalism, we study two main features of the QCD string: the string tension dependence on the temperature while in the confining phase, and the logarithmic broadening of the flux tube between the heavy static charges that turns out to be a generic property of all confining theories. Finally, we review the k-string bound state and we show that for a wide class of generic theories the k-string observables can be expressed in terms of the single meson bound state observables.
I review applications of superconformal algebra. light-front holography, and an extended form of conformal symmetry to hadron spectroscopy and dynamics. QCD is not supersymmetrical in the traditional sense -- the QCD Lagrangian is based on quark and
We relate quark confinement, as measured by the Polyakov-loop order parameter, to color confinement, as described by the Kugo-Ojima/Gribov-Zwanziger scenario. We identify a simple criterion for quark confinement based on the IR behaviour of ghost and
We study confinement in 4d $mathcal{N}=1$ $SU(N)$ Super-Yang Mills (SYM) from a holographic point of view, focusing on the 1-form symmetry and its relation to chiral symmetry breaking. In the 5d supergravity dual, obtained by truncation of the Kleban
It is shown that an effective theory with meron degrees of freedom produces confinement in SU(2) Yang Mills theory. This effective theory is compatible with center symmetry. When the scale is set by the string tension, the action density and topologi
We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well wi