ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity

648   0   0.0 ( 0 )
 نشر من قبل Artie Hatzes
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the nature of the long-period radial velocity variations in Alpha Tau first reported over 20 years ago. We analyzed precise stellar radial velocity measurements for Alpha Tau spanning over 30 years. An examination of the Halpha and Ca II 8662 spectral lines, and Hipparcos photometry was also done to help discern the nature of the long-period radial velocity variations. Our radial velocity data show that the long-period, low amplitude radial velocity variations are long-lived and coherent. Furthermore, Halpha equivalent width measurements and Hipparcos photometry show no significant variations with this period. Another investigation of this star established that there was no variability in the spectral line shapes with the radial velocity period. An orbital solution results in a period of P = 628.96 +/- 0.90 d, eccentricity, e = 0.10 +/- 0.05, and a radial velocity amplitude, K = 142.1 +/- 7.2 m/s. Evolutionary tracks yield a stellar mass of 1.13 +/- 0.11 M_sun, which corresponds to a minimum companion mass of 6.47 +/- 0.53 M_Jup with an orbital semi-major axis of a = 1.46 +/- 0.27 AU. After removing the orbital motion of the companion, an additional period of ~ 520 d is found in the radial velocity data, but only in some time spans. A similar period is found in the variations in the equivalent width of Halpha and Ca II. Variations at one-third of this period are also found in the spectral line bisector measurements. The 520 d period is interpreted as the rotation modulation by stellar surface structure. Its presence, however, may not be long-lived, and it only appears in epochs of the radial velocity data separated by $sim$ 10 years. This might be due to an activity cycle. The data presented here provide further evidence of a planetary companion to Alpha Tau, as well as activity-related radial velocity variations.



قيم البحث

اقرأ أيضاً

Long-term stellar activity variations can affect the detectability of long-period and Earth-analogue extrasolar planets. We have, for 54 stars, analysed the long-term trend of five activity indicators: log$R_mathrm{{HK}}$, the cross-correlation funct ion (CCF) bisector span, CCF full-width-at-half-maximum, CCF contrast, and the area of the Gaussian fit to the CCF; and studied their correlation with the RVs. The sign of the correlations appears to vary as a function of stellar spectral type, and the transition in sign signals a noteworthy change in the stellar activity properties where earlier type stars appear more plage dominated. These transitions become more clearly defined when considered as a function of the convective zone depth. Therefore, it is the convective zone depth (which can be altered by stellar metallicity) that appears to be the underlying fundamental parameter driving the observed activity correlations. In addition, for most of the stars, we find that the RVs become increasingly red-shifted as activity levels increase, which can be explained by the increase in the suppression of convective blue-shift. However, we also find a minority of stars where the RVs become increasingly blue-shifted as activity levels increase. Finally, using the correlation found between activity indicators and RVs, we removed RV signals generated by long-term changes in stellar activity. We find that performing simple cleaning of such long-term signals enables improved planet detection at longer orbital periods.
182 - B.-C. Lee , I. Han , M.-G. Park 2014
Aims. We study the low-amplitude and long-period variations in evolved stars using precise radial velocity measurements. Methods. The high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) was used from September 2004 to May 201 4 as part of the exoplanet search program at the Bohyunsan Optical Astronomy Observatory (BOAO). Results. We report the detection of low-amplitude and long-period orbital radial velocity variations in three evolved stars, HD 3574, 63 Cyg, and HD 216946. They have periods of 1061, 982, and 1382 days and semi-amplitudes of 376, 742, and 699 m/s, respectively.
229 - S. Aigrain , F. Pont , S. Zucker 2011
We present a new, simple method to predict activity-induced radial velocity variations using high-precision time-series photometry. It is based on insights from a simple spot model, has only two free parameters (one of which can be estimated from the light curve) and does not require knowledge of the stellar rotation period. We test the method on simulated data and illustrate its performance by applying it to MOST/SOPHIE observations of the planet host-star HD189733, where it gives almost identical results to much more sophisticated, but highly degenerate models, and synthetic data for the Sun, where we demonstrate that it can reproduce variations well below the m/s level. We also apply it to Quarter 1 data for Kepler transit candidate host stars, where it can be used to estimate RV variations down to the 2-3m/s level, and show that RV amplitudes above that level may be expected for approximately two thirds of the candidates we examined.
In a search for eclipsing white dwarfs using the Zwicky Transient Facility lightcurves, we identified a deep eclipsing white dwarf with a dark, substellar companion. The lack of an infrared excess and an orbital period of 10 hours made this a potenti al exoplanet candidate. We obtained high-speed photometry and radial velocity measurements to characterize the system. The white dwarf has a mass of $0.50pm0.02,mathrm{M_{odot}}$ and a temperature of $10900pm200,$K. The companion has a mass of $0.059pm0.004,mathrm{M_{odot}}$ and a small radius of $0.0783pm0.0013,mathrm{R_{odot}}$. It is one of the smallest transiting brown dwarfs known and likely old, $gtrsim 8,$Gyr. The ZTF discovery efficiency of substellar objects transiting white dwarfs is limited by the number of epochs and as ZTF continues to collect data we expect to find more of these systems. This will allow us to measure period and mass distributions and allows us to understand the formation channels of white dwarfs with substellar companions.
Detecting exoplanets around giant stars sheds light on the later-stage evolution of planetary systems. We observed the M giant HD 18438 and the K giant HD 158996 as part of a Search for Exoplanets around Northern circumpolar Stars (SENS) and obtained 38 and 24 spectra from 2010 to 2017 using the high-resolution Bohyunsan Observatory Echelle Spectrograph (BOES) at the 1.8m telescope of Bohyunsan Optical Astronomy Observatory in Korea. We obtained precise RV measurements from the spectra and found long-period radial velocity (RV) variations with period 719.0 days for HD 18438 and 820.2 days for HD 158996. We checked the chromospheric activities using Ca ii H and H_alpha lines, HIPPARCOS photometry and line bisectors to identify the origin of the observed RV variations. In the case of HD 18438, we conclude that the observed RV variations with period 719.0 days are likely to be caused by the pulsations because the periods of HIPPARCOS photometric and H alpha EW variations for HD 18438 are similar to that of RV variations in Lomb-Scargle periodogram, and there are no correlations between bisectors and RV measurements. In the case of HD 158996, on the other hand, we did not find any similarity in the respective periodograms nor any correlation between RV variations and line bisector variations. In addition, the probability that the real rotational period can be as longer than the RV period for HD 158996 is only about 4.3%. Thus we conclude that observed RV variations with a period of 820.2 days of HD 158996 are caused by a planetary companion, which has the minimum mass of 14.0 MJup, the semi-major axis of 2.1 AU, and eccentricity of 0.13 assuming the stellar mass of 1.8 M_sun. HD 158996 is so far one of the brightest and largest stars to harbor an exoplanet candidate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا