ﻻ يوجد ملخص باللغة العربية
Fusion cross sections of 28Si + 28Si have been measured in a range above the barrier with a very small energy step (DeltaElab = 0.5 MeV). Regular oscillations have been observed, best evidenced in the first derivative of the energy-weighted excitation function. For the first time, quite different behaviors (the appearance of oscillations and the trend of sub-barrier cross sections) have been reproduced within the same theoretical frame, i.e., the coupled-channel model using the shallow M3Y+repulsion potential. The calculations suggest that channel couplings play an important role in the appearance of the oscillations, and that the simple relation between a peak in the derivative of the energy-weighted cross section and the height of a centrifugal barrier is lost, and so is the interpretation of the second derivative of the excitation function as a barrier distribution for this system, at energies above the Coulomb barrier.
The cross sections of complete fusion and incomplete fusion for the $ ^{9} $Be + $ ^{197} $Au system, at energies not too much above the Coulomb barrier, were measured for the first time. The online activation followed by offline $gamma$-ray spectros
Above-barrier fusion cross-sections for an isotopic chain of oxygen isotopes with A=16-19 incident on a $^{12}$C target are presented. Experimental data are compared with both static and dynamical microscopic calculations. These calculations are unab
The possible occurence of highly deformed configurations in the $^{40}$Ca di-nuclear system formed in the $^{28}$Si + $^{12}$C reaction is investigated by analyzing the spectra of emitted light charged particles. Both inclusive and exclusive measurem
Fusion excitation function of $^{35}$Cl + $^{130}$Te system is measured in the energy range around the Coulomb barrier and analyzed in the framework of the coupled-channels approach. The role of projectile deformation, nuclear structure, and the coup
The 12C+16O resonant radiative capture reaction has been studied at 5 bombarding energies between Elab = 15.4 and 21.4 MeV, around the Coulomb barrier, at the Triumf laboratory (Vancouver, Canada) using the Dragon 0{deg} spectrometer and the associat