ترغب بنشر مسار تعليمي؟ اضغط هنا

The electronic structure and elastic property of monolayer and bilayer transition metal dichalcogenides MX$_2$ (M=Mo,W;X=O,S,Se,Te): A comparative first-principles study

229   0   0.0 ( 0 )
 نشر من قبل Wei-Bing Zhang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

First-principle calculations with different exchange-correlation functionals, including LDA, PBE and vdW-DF functional in form of optB88-vdW, have been performed to investigate the electronic and elastic properties of two dimensional transition metal dichalcogenides(TMDCs) with the formula of MX$_2$(M=Mo,W; X=O,S,Se,Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO$_2$ and WO$_2$. When the monolayers are stacked into bilayer, the reduced indirect band gaps are found except for bilayer WTe$_2$, in which direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to graphene, which promises the possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and optB88-vdW in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.



قيم البحث

اقرأ أيضاً

Very recently, it has been shown that vanadium dichalcogenides (VX$_2$, X=S, Se and Te) monolayers show intrinsic ferromagnetism, and their critical temperatures are nearly to or beyond room temperature. Hence, they would have wide potential applicat ions in next-generation nanoelectronic and spintronic devices. In this work, being inspired by a recent study we systematically perform Monte Carlo simulations based on single-site update Metropolis algorithm to investigate the hysteresis features of VX$_2$ monolayers for a wide range of temperatures up to 600 K. Our simulation results indicate that, both remanence and coercivity values tend to decrease with increasing temperature. Furthermore, it is found that hysteresis curves start to evolve from rectangular at the lower temperature regions to nearly S-shaped with increasing temperature.
We performed comparable polarized Raman scattering studies of MoTe2 and WTe2. By rotating crystals to tune the angle between the principal axis of the crystals and the polarization of the incident/scattered light, we obtained the angle dependence of the intensities for all the observed modes, which is perfectly consistent with careful symmetry analysis. Combining these results with first-principles calculations, we clearly identified the observed phonon modes in the different phases of both crystals. Fifteen Raman-active phonon modes (10Ag+5Bg) in the high-symmetry phase 1T-MoTe2 (300 K) were well assigned, and all the symmetry-allowed Raman modes (11A1+6A2) in the low-symmetry phase Td-MoTe2 (10 K) and 12 Raman phonons (8A1+4A2) in Td-WTe2 were observed and identified. The present work provides basic information about the lattice dynamics in transition-metal dichalcogenides and may shed some light on the understanding of the extremely large magnetoresistance (MR) in this class of materials.
The electronic band structure and elastic properties of the Cd${}_{16}$Se${}_{15}$Te solid state solution in the framework of the density functional theory calculations are investigated. The structure of the sample is constructed on the original bina ry compound CdSe, which crystallizes in the cubic phase. Based on the electronic band structure, the effective mass of electron, heavy hole, light hole, spin-orbit effective masses and reduced mass in G point are calculated. In addition, the exciton binding energy, refractive index and high-frequency dielectric constant are calculated. The Young modulus, shear modulus, bulk modulus and Poisson ratio are calculated theoretically. Based on the results of elastic coefficients, the value of acoustic velocity and Debye temperature is obtained.
435 - Tao Jiang 2021
Transition metal dichalcogenides are rich in their structural phases, e.g. 1T-TaS2 and 1T-TaSe2 form charge density wave (CDW) under low temperature with interesting and exotic properties. Here, we present a systematic study of different structures i n two-dimensional TaX2 (X=S, Se, Te) using density functional theory calculations with consideration of van der Waals interaction. All the normal phases present metal characteristics with various ground state and magnetic properties. The lattice reconstruction of CDW drastically affects the electronic and structural characteristics of 1T-TaS2 and 1T-TaSe2, leading to a transition from metal to insulator and an emergence of magnetic moment within periodic atomic clusters called the Star of David. The evaluated Heisenberg couplings indicate the weak ferromagnetic coupling between the clusters in monolayer. Furthermore, in bilayer commensurate CDW cases, we find intriguing phenomenon of the varying magnetic properties with different stacking orders. The magnetic moment in each layer disappears when two layers are coupled, but may sustain in certain stackings of interlayer antiferromagnetic configurations.
Fe$M_2X_4$ spinels, where $M$ is a transition metal and $X$ is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. We present here a computational study of the inversion thermodynamics and the electronic structure of these (thio)spinels for $M=$ Cr, Mn, Co, Ni, using calculations based on the density functional theory with on-site Hubbard corrections (DFT+$U$). The analysis of the configurational free energies shows that different behaviour is expected for the equilibrium cation distributions in these structures: FeCr$_2X_4$ and FeMn$_2$S$_4$ are fully normal, FeNi$_2X_4$ and FeCo$_2$S$_4$ are intermediate, and FeCo$_2$O$_4$ and FeMn$_2$O$_4$ are fully inverted. We have analyzed the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. We also discuss how the electronic and magnetic structure of these spinels is modified by the degree of inversion, assuming that this could be varied from the equilibrium value. We have obtained electronic densities of states for the completely normal and completely inverse cation distribution of each compound. FeCr$_2X_4$, FeMn$_2X_4$, FeCo$_2$O$_4$ and FeNi$_2$O$_4$ are half-metals in the ferrimagnetic state when Fe is in tetrahedral positions. When $M$ is filling the tetrahedral positions, the Cr-containing compounds and FeMn$_2$O$_4$ are half-metallic systems, while the Co and Ni spinels are insulators. The Co and Ni sulfide counterparts are metallic for any inversion degree together with the inverse FeMn$_2$S$_4$. Our calculations suggest that the spin filtering properties of the Fe$M_2X_4$ (thio)spinels could be modified via the control of the cation distribution through variations in the synthesis conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا