ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and Analysis of Communication Protocols for Quantum Repeater Networks

244   0   0.0 ( 0 )
 نشر من قبل Thaddeus Ladd
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze how the performance of a quantum-repeater network depends on the protocol employed to distribute entanglement, and we find that the choice of repeater-to-repeater link protocol has a profound impact on communication rate as a function of hardware parameters. We develop numerical simulations of quantum networks using different protocols, where the repeater hardware is modeled in terms of key performance parameters, such as photon generation rate and collection efficiency. These parameters are motivated by recent experimental demonstrations in quantum dots, trapped ions, and nitrogen-vacancy centers in diamond. We find that a quantum-dot repeater with the newest protocol (MidpointSource) delivers the highest communication rate when there is low probability of establishing entanglement per transmission, and in some cases the rate is orders of magnitude higher than other schemes. Our simulation tools can be used to evaluate communication protocols as part of designing a large-scale quantum network.



قيم البحث

اقرأ أيضاً

Quantum repeater networks have attracted attention for the implementation of long-distance and large-scale sharing of quantum states. Recently, researchers extended classical network coding, which is a technique for throughput enhancement, into quant um information. The utility of quantum network coding (QNC) has been shown under ideal conditions, but it has not been studied previously under conditions of noise and shortage of quantum resources. We analyzed QNC on a butterfly network, which can create end-to-end Bell pairs at twice the rate of the standard quantum network repeater approach. The joint fidelity of creating two Bell pairs has a small penalty for QNC relative to entanglement swapping. It will thus be useful when we care more about throughput than fidelity. We found that the output fidelity drops below 0.5 when the initial Bell pairs have fidelity F < 0.90, even with perfect local gates. Local gate errors have a larger impact on quantum network coding than on entanglement swapping.
A general protocol in Quantum Information and Communication relies in the ability of producing, transmitting and reconstructing, in general, qunits. In this letter we show for the first time the experimental implementation of these three basic steps on a pure state in a three dimensional space, by means of the orbital angular momentum of the photons. The reconstruction of the qutrit is performed with tomographic techniques and a Maximum-Likelihood estimation method. In this way we also demonstrate that we can perform any transformation in the three dimensional space.
Quantum networks will support long-distance quantum key distribution (QKD) and distributed quantum computation, and are an active area of both experimental and theoretical research. Here, we present an analysis of topologically complex networks of qu antum repeaters composed of heterogeneous links. Quantum networks have fundamental behavioral differences from classical networks; the delicacy of quantum states makes a practical path selection algorithm imperative, but classical notions of resource utilization are not directly applicable, rendering known path selection mechanisms inadequate. To adapt Dijkstras algorithm for quantum repeater networks that generate entangled Bell pairs, we quantify the key differences and define a link cost metric, seconds per Bell pair of a particular fidelity, where a single Bell pair is the resource consumed to perform one quantum teleportation. Simulations that include both the physical interactions and the extensive classical messaging confirm that Dijkstras algorithm works well in a quantum context. Simulating about three hundred heterogeneous paths, comparing our path cost and the total work along the path gives a coefficient of determination of 0.88 or better.
We point out that realization of quantum communication protocols in programmable quantum computers provides a deep benchmark for capabilities of real quantum hardware. Particularly, it is prospective to focus on measurements of entropy-based characte ristics of the performance and to explore whether a quantum regime is preserved. We perform proof-of-principle implementations of superdense coding and quantum key distribution BB84 using 5- and 16-qubit superconducting quantum processors of IBM Quantum Experience. We focus on the ability of these quantum machines to provide an efficient transfer of information between distant parts of the processors by placing Alice and Bob at different qubits of the devices. We also examine the ability of quantum devices to serve as quantum memory and to store entangled states used in quantum communication. Another issue we address is an error mitigation. Although it is at odds with benchmarking, this problem is nevertheless of importance in a general context of quantum computation with noisy quantum devices. We perform such a mitigation and noticeably improve some results.
We present a new control algorithm and system design for a network of quantum repeaters, and outline the end-to-end protocol architecture. Such a network will create long-distance quantum states, supporting quantum key distribution as well as distrib uted quantum computation. Quantum repeaters improve the reduction of quantum-communication throughput with distance from exponential to polynomial. Because a quantum state cannot be copied, a quantum repeater is not a signal amplifier, but rather executes algorithms for quantum teleportation in conjunction with a specialized type of quantum error correction called purification to raise the fidelity of the quantum states. We introduce our banded purification scheme, which is especially effective when the fidelity of coupled qubits is low, improving the prospects for experimental realization of such systems. The resulting throughput is calculated via detailed simulations of a long line composed of shorter hops. Our algorithmic improvements increase throughput by a factor of up to fifty compared to earlier approaches, for a broad range of physical characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا