ترغب بنشر مسار تعليمي؟ اضغط هنا

An extremely young massive clump forming by gravitational collapse in a primordial galaxy

177   0   0.0 ( 0 )
 نشر من قبل Anita Zanella
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Zanella




اسأل ChatGPT حول البحث

When the cosmic star formation history peaks (z ~ 2), galaxies vigorously fed by cosmic reservoirs are gas dominated and contain massive star-forming clumps, thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not been witnessed yet, and it is debated whether clumps survive energetic feedback from young stars, thus migrating inwards to form galaxy bulges. Here we report spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates the star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (age < 10 Myr) massive clump, forming through the gravitational collapse of > 10$^9$ M$_{odot}$ of gas. Gas consumption in this young clump is > 10 times faster than in the host galaxy, displaying high star formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses coupled with our initial estimate of their formation rate (~ 2.5 Gyr$^{-1}$) supports long lifetimes (~ 500 Myr), favouring scenarios where clumps survive feedback and grow the bulges of present-day galaxies.



قيم البحث

اقرأ أيضاً

Young massive clusters (YMCs) are the most compact, high-mass stellar systems still forming at the present day. The precursor clouds to such systems are, however, rare due to their large initial gas mass reservoirs and rapid dispersal timescales due to stellar feedback. Nonetheless, unlike their high-z counterparts, these precursors are resolvable down to the sites of individually forming stars, and hence represent the ideal environments in which to test the current theories of star and cluster formation. Using high angular resolution (1$^{primeprime}$ / 0.05pc) and sensitivity ALMA observations of two YMC progenitor clouds in the Galactic Centre, we have identified a suite of molecular line transitions -- e.g. c-C$_{3}$H$_{2} $($7-6$) -- that are believed to be optically thin, and reliably trace the gas structure in the highest density gas on star-forming core scales. We conduct a virial analysis of the identified core and proto-cluster regions, and show that half of the cores (5/10) and both proto-clusters are unstable to gravitational collapse. This is the first kinematic evidence of global gravitational collapse in YMC precursor clouds at such an early evolutionary stage. The implications are that if these clouds are to form YMCs, then they likely do so via the conveyor-belt mode, whereby stars continually form within dispersed dense gas cores as the cloud undergoes global gravitational collapse. The concurrent contraction of both the cluster-scale gas and embedded (proto)stars ultimately leads to the high (proto)stellar density in YMCs.
77 - J. Forbrich 2004
In the course of a comprehensive mm/submm survey of massive star-forming regions, a particularly interesting object has been found in the surroundings of the bright FIR source IRAS 07029-1215, in a distance of 1 kpc. The object -- named UYSO 1 (Unide ntified Young Stellar Object 1) -- is cold (T=40 K), it has a massive envelope, and it is associated with an energetic molecular outflow. No infrared point source has been detected at its position for wavelengths below 20 micron. Therefore, it is a very good candidate for a member of the long searched for group of massive protostars.
The high velocity dispersion compact cloud CO-0.30-0.07 is a peculiar molecular clump discovered in the central moleculr zone of the Milky Way, which is characterized by its extremely broad velocity emissions ($sim 145 rm{km s^{-1}}$) despite the abs ence of internal energy sources. We present new interferometric maps of the cloud in multiple molecular lines in frequency ranges of 265--269 GHz and 276--280 GHz obtained using the Sumbmillimeter Array, along with the single-dish images previously obtained with the ASTE 10-m telescope. The data show that the characteristic broad velocity emissions are predominantly confined in two parallel ridges running through the cloud center. The central ridges are tightly anti-correlated with each other in both space and velocity, thereby sharply dividing the entire cloud into two distinct velocity components (+15 km s$^{-1}$ and +55 km s$^{-1}$). This morphology is consistent with a model in which the two velocity components collide with a relative velocity of 40 $mathrm{km s^{-1}}$ at the interface defined by the central ridges, although an alternative explanation with a highly inclined expanding-ring model is yet to be fully invalidated. We have also unexpectedly detected several compact clumps ($lesssim 0.1 $pc in radius) likely formed by shock compression. The clumps have several features in common with typical star-forming clouds: high densities ($10^{6.5-7.5} mathrm{cm^{-3}}$), rich abundances of hot-core-type molecular species, and relatively narrow velocity widths apparently decoupled from the furious turbulence dominating the cloud. The cloud CO-0.30-0.07 is possibly at an early phase of star formation activity triggered by the shock impact.
Since their discovery, submillimetre-selected galaxies (SMGs) have revolutionized the field of galaxy formation and evolution. From the hundreds of square degrees mapped at submillimetre wavelengths, only a handful of sources have been confirmed to l ie at z>5 and only two at z>6. All of these SMGs are rare examples of extreme starburst galaxies with star formation rates (SFRs) of >1000 M_sun/yr and therefore are not representative of the general population of dusty star-forming galaxies. Consequently, our understanding of the nature of these sources, at the earliest epochs, is still incomplete. Here we report the spectroscopic identification of a gravitationally amplified (mu = 9.3 +/- 1.0) dusty star-forming galaxy at z=6.027. After correcting for gravitational lensing, we derive an intrinsic less-extreme SFR of 380 +/- 50 M_sun/yr for this source and find that its gas and dust properties are similar to those measured for local Ultra Luminous Infrared Galaxies (ULIRGs), extending the local trends to a poorly explored territory in the early Universe. The star-formation efficiency of this galaxy is similar to those measured in its local analogues, despite a ~12 Gyr difference in cosmic time.
In the local (redshift z~0) Universe, collisional ring galaxies make up only ~0.01% of galaxies and are formed by head-on galactic collisions that trigger radially propagating density waves. These striking systems provide key snapshots for dissecting galactic disks and are studied extensively in the local Universe. However, not much is known about distant (z>0.1) collisional rings. Here we present a detailed study of a ring galaxy at a look-back time of 10.8 Gyr (z=2.19). Compared with our Milky Way, this galaxy has a similar stellar mass, but has a stellar half-light radius that is 1.5-2.2 times larger and is forming stars 50 times faster. The large, diffuse stellar light outside the star-forming ring, combined with a radial velocity on the ring and an intruder galaxy nearby, provides evidence for this galaxy hosting a collisional ring. If the ring is secularly evolved, the implied large bar in a giant disk would be inconsistent with the current understanding of the earliest formation of barred spirals. Contrary to previous predictions, this work suggests that massive collisional rings were as rare 11 Gyr ago as they are today. Our discovery offers a unique pathway for studying density waves in young galaxies, as well as constraining the cosmic evolution of spiral disks and galaxy groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا