ﻻ يوجد ملخص باللغة العربية
Detailed modeling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. We developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and VHE lightcurves, constraining the system inclination to $iapprox 35^{rm o}$. There is a tension between the hard VHE spectrum and the level of X-ray to MeV emission, which requires differing magnetic field intensities that are hard to achieve with a constant magnetisation $sigma$ and Lorentz factor $Gamma_{p}$ of the pulsar wind. Our best compromise implies $sigmaapprox 1$ and $Gamma_{p}approx 5times 10^{3}$, respectively higher and lower than the typical values in pulsar wind nebulae. The high value of $sigma$ derived here, where the wind is confined close to the pulsar, supports the classical picture that has pulsar winds highly magnetised at launch. However, such magnetisations will require further investigations to be based on relativistic MHD simulations.
The high and very-high energy spectrum of gamma-ray binaries has become a challenge for all theoretical explanations since the detection of powerful, persistent GeV emission from LS 5039 and LS I +61 303 by Fermi/LAT. The spectral cutoff at a few GeV
Context. Gamma-ray binaries are systems that radiate the dominant part of their non-thermal emission in the gamma-ray band. In a wind-driven scenario, these binaries are thought to consist of a pulsar orbiting a massive star, accelerating particles i
Gamma-ray binaries could be compact pulsar wind nebulae formed when a young pulsar orbits a massive star. The pulsar wind is contained by the stellar wind of the O or Be companion, creating a relativistic comet-like structure accompanying the pulsar
The number of Gamma-Ray Bursts (GRBs) detected at high energies ($sim,0.1-100$ GeV) has seen a rapid increase over the last decade, thanks to observations from the Fermi-Large Area Telescope. The improved statistics and quality of data resulted in a
Gamma-ray binaries (GBs) have been object of intense studies in the last decade. From an observational perspective, GBs are phenomenologically similar to most X-ray binary systems in terms of their broad-band emission across the entire electromagneti