ﻻ يوجد ملخص باللغة العربية
The half metallic and magnetic properties of Zr2RhZ (Z = Al, Ga, In) alloys with an Hg2CuTi-type structure were systematically investigated using the first-principle calculations. Zr2RhZ (Z = Al, Ga, In) alloys are predicted to be half-metallic ferrimagnets at their equilibrium lattice constants. The Zr2Rh-based alloys have Mt (the total magnetic moment per unit cell) and Zt (the valence concentration) values that in agreement with Slater-Pauling rule Mt = Zt -18. The half-metallic properties and the magnetic properties at different lattice constants are discussed in detail. We expect that our results may trigger Zr2RhZ (Z = Al, Ga, In) applying in the future spintronics field.
The Heusler alloys Fe2NiZ (Z=Al, Ga, Si and Ge) have been synthesized and investigated focusing on the phase stability and the magnetic properties. The experimental and theoretical results reveal the covalent bonding originated from p-d hybridization
Inelastic and elastic neutron scattering have been used to study a single crystal of the Ni$_{54}$Mn$_{23}$Al$_{23}$ Heusler alloy over a broad temperature range. The paper reports the first experimental determination of the low-lying phonon dispersi
Li-based half-Heusler alloys have attracted much attention due to their potential applications in optoelectronics and because they carry the possibility of exhibiting large magnetic moments for spintronic applications. Due to their similarities to me
We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport
In this paper, we investigate the half-metallicity of Heusler alloys Fe2Co1-xCrxSi by first principles calculations and anisotropy magnetoresistance measurements. It is found that, with the increase of Cr content x, the Fermi level of Fe2Co1-xCrxSi m