We give an alternative proof of an elliptic summation formula of type $BC_n$ by applying the fundamental $BC_n$ invariants to the study of Jackson integrals associated with the summation formula.
We establish a determinant formula for the bilinear form associated with the elliptic hypergeometric integrals of type $BC_n$ by studying the structure of $q$-difference equations to be satisfied by them. The determinant formula is proved by combinin
g the $q$-difference equations of the determinant and its asymptotic analysis along the singularities. The elliptic interpolation functions of type $BC_n$ are essentially used in the study of the $q$-difference equations.
The connection formula for the Jackson integral of type $BC_n$ is obtained in the form of a Sears--Slater type expansion of a bilateral multiple basic hypergeometric series as a linear combination of several specific bilateral multiple series. The co
efficients of this expansion are expressed by certain elliptic Lagrange interpolation functions. Analyzing basic properties of the elliptic Lagrange interpolation functions, an explicit determinant formula is provided for a fundamental solution matrix of the associated system of $q$-difference equations.
We investigate the connection problem for the Jackson integral of type $A_n$. Our connection formula implies a Slater type expansion of a bilateral multiple basic hypergeometric series as a linear combination of several specific multiple series. Intr
oducing certain elliptic Lagrange interpolation functions, we determine the explicit form of the connection coefficients. We also use basic properties of the interpolation functions to establish an explicit determinant formula for a fundamental solution matrix of the associated system of $q$-difference equations.
To investigate how quantum effects might modify special relativity, we will study a Lorentz transformation between classical and quantum reference frames and express it in terms of the four-dimensional (4D) momentum of the quantum reference frame. Th
e transition from the classical expression of the Lorentz transformation to a quantum-mechanical one requires us to symmetrize the expression and replace all its dynamical variables with the corresponding operators, from which we can obtain the same conclusion as that from quantum field theory (given by Weinbergs formula): owing to the Heisenbergs uncertainty relation, a particle (as a quantum reference frame) can propagate over a spacelike interval.