ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical Probing of Field-Driven Cascading Quantized Transitions of Skyrmion Cluster States in MnSi Nanowires

101   0   0.0 ( 0 )
 نشر من قبل Haifeng Du
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic skyrmions are topologically stable whirlpool-like spin textures that offer great promise as information carriers for future ultra-dense memory and logic devices1-4. To enable such applications, particular attention has been focused on the skyrmions properties in highly confined geometry such as one dimensional nanowires5-8. Hitherto it is still experimentally unclear what happens when the width of the nanowire is comparable to that of a single skyrmion. Here we report the experimental demonstration of such scheme, where magnetic field-driven skyrmion cluster (SC) states with small numbers of skyrmions were demonstrated to exist on the cross-sections of ultra-narrow single-crystal MnSi nanowires (NWs) with diameters, comparable to the skyrmion lattice constant (18 nm). In contrast to the skyrmion lattice in bulk MnSi samples, the skyrmion clusters lead to anomalous magnetoresistance (MR) behavior measured under magnetic field parallel to the NW long axis, where quantized jumps in MR are observed and directly associated with the change of the skyrmion number in the cluster, which is supported by Monte Carlo simulations. These jumps show the key difference between the clustering and crystalline states of skyrmions, and lay a solid foundation to realize skyrmion-based memory devices that the number of skyrmions can be counted via conventional electrical measurements.



قيم البحث

اقرأ أيضاً

121 - B. L. Brown , C. Reichhardt , 2018
We examine skyrmions driven periodically over random quenched disorder and show that there is a transition from reversible motion to a state in which the skyrmion trajectories are chaotic or irreversible. We find that the characteristic time required for the system to organize into a steady reversible or irreversible state exhibits a power law divergence near a critical ac drive period, with the same exponent as that observed for reversible to irreversible transitions in periodically sheared colloidal systems, suggesting that the transition can be described as an absorbing phase transition in the directed percolation universality class. We compare our results to the behavior of an overdamped system and show that the Magnus term enhances the irreversible behavior by increasing the number of dynamically accessible orbits. We discuss the implications of this work for skyrmion applications involving the long time repeatable dynamics of dense skyrmion arrays.
We used micromagnetic simulations to investigate the spatial distributions of the effective magnetic fields induced by spin chirality in crossed nanowires with three characteristic magnetic structures: a radiated-shape, an antivortex, and a uniform-l ike states. Our results indicate that, unlike the anomalous Hall effect, the topological Hall effect (which is related to the spin chirality) depends on both the polarity and the vorticity. Therefore, measuring the topological Hall effect can detect both the polarity and the vorticity simultaneously in crossed nanowires. This approach may be suitable for use as an elemental technique in the quest for a next-generation multi-value memory.
We report the direct measurement of the topological skyrmion energy barrier through a hysteresis of the skyrmion lattice in the chiral magnet MnSi. Measurements were made using small-angle neutron scattering with a custom-built resistive coil to allo w for high-precision minor hysteresis loops. The experimental data was analyzed using an adapted Preisach model to quantify the energy barrier for skyrmion formation and corroborated by the minimum-energy path analysis based on atomistic spin simulations. We reveal that the skyrmion lattice in MnSi forms from the conical phase progressively in small domains, each of which consisting of hundreds of skyrmions, and with an activation barrier of several eV.
140 - M. C. Depassier 2015
Recent analytical and numerical work on field driven domain wall propagation in nanowires has shown that for large transverse anisotropy and sufficiently large applied fields the Walker profile becomes unstable before the breakdown field, giving way to a slower stationary domain wall. We perform an asymptotic expansion of the Landau Lifshitz Gilbert equation for large transverse magnetic anisotropy and show that the asymptotic dynamics reproduces this behavior. At low applied field the speed increases linearly with the field and the profile is the classic Landau profile. Beyond a critical value of the applied field the domain wall slows down. The appearance of a slower domain wall profile in the asymptotic dynamics is due to a transition from a pushed to a pulled front of a reaction diffusion equation.
Sub-gap states in semiconducting-superconducting nanowire hybrid devices are controversially discussed as potential topologically non-trivial quantum states. One source of ambiguity is the lack of an energetically and spatially well defined tunnel sp ectrometer. Here, we use quantum dots directly integrated into the nanowire during the growth process to perform tunnel spectroscopy of discrete sub-gap states in a long nanowire segment. In addition to sub-gap states with a standard magnetic field dependence, we find topologically trivial sub-gap states that are independent of the external magnetic field, i.e. that are pinned to a constant energy as a function of field. We explain this effect qualitatively and quantitatively by taking into account the strong spin-orbit interaction in the nanowire, which can lead to a decoupling of Andreev bound states from the field due to a spatial spin texture of the confined eigenstates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا