ﻻ يوجد ملخص باللغة العربية
We present spectroscopy of nine planetary nebulae (PNe) in the outskirts of M31, all but one obtained with the 10.4m GTC telescope. These sources extend our previous study of the oxygen abundance gradient of M31 to galactocentric radii as large as 100 kpc. None of the targets are bona fide members of a classical, metal-poor and ancient halo. Two of the outermost PNe have solar oxygen abundances, as well as radial velocities consistent with the kinematics of the extended disk of M31. The other PNe have a slightly lower oxygen content ([O/H] ~ -0.4) and in some cases large deviations from the disk kinematics. These PNe support the current view that the external regions of M31 are the result of a complex interaction and merger process, with evidence for a widespread population of solar-metallicity stars produced in a starburst that occurred ~2 Gyr ago.
We have developed a method to identify planetary nebula (PN) candidates in imaging data of the Sloan Digital Sky Survey (SDSS). This method exploits the SDSS five-band sampling of emission lines in PN spectra, which results in a color signature disti
The age-velocity dispersion relation is an important tool to understand the evolution of the disc of the Andromeda galaxy (M31) in comparison with the Milky Way. We use Planetary Nebulae (PNe) to obtain the age-velocity dispersion relation in differe
The Andromeda (M31) galaxy displays several substructures in its inner halo whose origin as remnants of accreted satellites or perturbations of the pre-existing disc are encoded in the properties of their stellar populations (SPs), leaving traces on
We introduce crowded field integral field (3D) spectrophotometry as a useful technique for the study of resolved stellar populations in nearby galaxies. As a methodological test, we present a pilot study with selected extragalactic planetary nebulae
The Andromeda (M31) galaxy subtends nearly 100 sq. deg. on the sky, with severe contamination from the Milky Way halo stars whose surface density displays a steep gradient across the entire M31 field-of-view. Planetary Nebulae (PNe) are a population