ﻻ يوجد ملخص باللغة العربية
Heisenberg interactions are ubiquitous in magnetic materials and have been prevailing in modeling and designing quantum magnets. Bond-directional interactions offer a novel alternative to Heisenberg exchange and provide the building blocks of the Kitaev model, which has a quantum spin liquid (QSL) as its exact ground state. Honeycomb iridates, A2IrO3 (A=Na,Li), offer potential realizations of the Kitaev model, and their reported magnetic behaviors may be interpreted within the Kitaev framework. However, the extent of their relevance to the Kitaev model remains unclear, as evidence for bond-directional interactions remains indirect or conjectural. Here, we present direct evidence for dominant bond-directional interactions in antiferromagnetic Na2IrO3 and show that they lead to strong magnetic frustration. Diffuse magnetic x-ray scattering reveals broken spin-rotational symmetry even above Neel temperature, with the three spin components exhibiting nano-scale correlations along distinct crystallographic directions. This spin-space and real-space entanglement directly manifests the bond-directional interactions, provides the missing link to Kitaev physics in honeycomb iridates, and establishes a new design strategy toward frustrated magnetism.
We have used resonant inelastic x-ray scattering to reveal optical magnons in a honeycomb lattice iridate $alpha$-Li$_{2}$IrO$_{3}$. The spectrum in the energy region 20-25 meV exhibits momentum dependence, of which energy is highest at the location
We report inelastic neutron scattering measurements on Na2IrO3, a candidate for the Kitaev spin model on the honeycomb lattice. We observe spin-wave excitations below 5 meV with a dispersion that can be accounted for by including substantial further-
We demonstrate that ethylammonium copper chloride, (C2H5NH3)2CuCl4, a member of the hybrid perovskite family is an electrically polar and magnetic compound with dielectric anomaly around the Curie point (247 K). We have found large spontaneous electr
The physics of Mott insulators underlies diverse phenomena ranging from high temperature superconductivity to exotic magnetism. Although both the electron spin and the structure of the local orbitals play a key role in this physics, in most systems t
Honeycomb iridate Na2IrO3, a Jeff=1/2 magnet, is a potential platform for realizing the quantum spin liquid. Many experiments have shown that its magnetic ground state has a zigzag antiferromagnetic (AFM) order. However, there is still a lack of cons