ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation of new large area PMT with high quantum efficiency

336   0   0.0 ( 0 )
 نشر من قبل Xiang-Cui Lei
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The neutrino detector of the Jiangmen Underground Neutrino Observatory (JUNO) is designed to use 20 kilotons of liquid scintillator and approximately 16,000 20-inch photomultipliers (PMTs).One of the options is to use the 20-inch R12860 PMT with high quantum efficiency which has recently been developed by Hamamatsu Photonics. The performance of the newly developed PMT preproduction samples is evaluated. The results show that its quantum efficiency is $30%$ at $400 nm$. Its Peak/Valley (P/V) ratio for the single photoelectron is 4.75 and the dark count rate is $27 kHz$ at the threshold of 3 mV while the gain is at $1 times 10^7$. The transit time spread of a single photoelectron is $2.86 ns$. Generally the performances of this new 20-inch PMT are improved over the old one of R3600.



قيم البحث

اقرأ أيضاً

The Jiangmen Underground Neutrino Observatory (JUNO) will install about 18,000 20-inch Photomultiplier Tubes (PMTs) in the center detector to achieve 3%/sqrt(E(MeV)) energy resolution. From the full detector Monte Carlo (MC) simulation, besides the l iquid scitillator (LS) and Acrylic nodes, PMT glass has the largest contribution to the natural radioactive background. Various technologies have been developed in the Chinese industry to control the environment and to improve the production process. We have monitored the glass production for more than two months, and the radioactivity in glass was measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The 238U, 232Th and 40K of the glass bulb are reduced by a factor of 2, 9 and 15 respectively, and now they can reach 2.5 Bq/kg for 238U, 0.5 Bq/kg for 232Th and 0.5 Bq/kg for 40K.
In this paper, the detection efficiency of a large area neutron sensitive microchannel plate detector has been evaluated. A 6LiF/ZnS detector was employed as the benchmark detector, the TOF spectra of these two detectors were simultaneously measured and the energy spectra were then deduced to calculate the detection efficiency curve of the nMCP detector. Tests show the detection [email protected] meV thermal neutron is 34% for this nMCP detector.
Cascades from high-energy particles produce a brief current and associated magnetic fields. Even sub-nanosecond duration magnetic fields can be detected with a relatively low bandwidth system by latching image currents on a capacitor. At accelerators , this technique is employed routinely by beam-current monitors, which work for pulses even as fast as femtoseconds. We discuss scaling up these instruments in size, to 100 meters and beyond, to serve as a new kind of ground- and space-based high-energy particle detector which can instrument large areas relatively inexpensively. This new technique may be used to detect and/or veto ultra-high energy cosmic-ray showers above 100 PeV. It may also be applied to searches for hypothetical highly charged particles. In addition, these detectors may serve to search for extremely short magnetic field pulses of any origin, faster than other detectors by orders of magnitude.
281 - Yaping Cheng , Sen Qian , Zhe Ning 2014
A system employing a desktop FADC has been developed to investigate the features of 8 inches Hamamatsu PMT. The system stands out for its high-speed and informative results as a consequence of adopting fast waveform sampling technology. Recording ful l waveforms allows us to perform digital signal processing, pulse shape analysis, and precision timing extraction. High precision after pulse time and charge distribution characteristics are presented in this manuscript. Other photomultipliers characteristics, such as dark rate and transit time spread, can also be obtained by exploiting waveform analysis using this system.
JUNO is proposed to determine the neutrino mass hierarchy and rich in many other neutrino topics. A prototype is designed and set up for better understanding sub-systems of future detector. The preliminary results show that its threshold reaches ~0.3 MeV with trigger rate ~290 Hz on the ground with cosmic muon rate ~35 Hz. Aiming for a better detector understanding from PMT signal, three reconstruction algorithms are compared for PMT waveforms with different overshoot ratios, including charge integration, waveform fitting, and deconvolution. It is concluded that the three methods have similar performance on uncertainty and systematic bias while deconvolution algorithm is best to handle larger overshoot and the simplest charge integration could be considered with controlled overshoot for future fast preliminary reconstruction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا