ﻻ يوجد ملخص باللغة العربية
Blazars are among the most variable objects in the universe. They feature energetic jets of plasma that launch from the cores of these active galactic nuclei (AGN), triggering activity from radio up to gamma-ray energies. Spatial localization of the region of their MeV/GeV emission is a key question in understanding the blazar phenomenon. The flat spectrum radio quasar (FSRQ) PKS 1502+106 has exhibited extreme and correlated, radio and high-energy activity that triggered intense monitoring by the Fermi-GST AGN Multi-frequency Monitoring Alliance (F-GAMMA) program and the Global Millimeter VLBI Array (GMVA) down to $lambda$3 mm (or 86 GHz), enabling the sharpest view to date towards this extreme object. Here, we report on preliminary results of our study of the gamma-ray loud blazar PKS 1502+106, combining VLBI and single dish data. We deduce the critical aspect angle towards the source to be $theta_{rm c} = 2.6^{circ}$, calculate the apparent and intrinsic opening angles and constrain the distance of the 86 GHz core from the base of the conical jet, directly from mm-VLBI but also through a single dish relative timing analysis. Finally, we conclude that gamma rays from PKS 1502+106 originate from a region between ~1-16 pc away from the base of the hypothesized conical jet, well beyond the bulk of broad-line region (BLR) material of the source.
We carried out a multifrequency and multiepoch study of the highly polarized quasar, PKS 1502+106 at radio frequencies. The analysis is based on an EVN dataset at 5 GHz, archive VLBA datasets at 2.3, 8.3, 24.4 and 43.1 GHz and an archive MERLIN datas
The $gamma$-ray production mechanism and its localization in blazars are still a matter of debate. The main goal of this paper is to constrain the location of the high-energy emission in the blazar TXS 2013+370 and to study the physical and geometric
The flat-spectrum radio quasar PKS 1441+25 at a redshift of z = 0.940 is detected between 40 and 250 GeV with a significance of 25.5 {sigma} using the MAGIC telescopes. Together with the gravitationally lensed blazar QSO B0218+357 (z = 0.944), PKS 14
The detection of gamma-ray emission from narrow-line Seyfert 1 galaxies (NLSy1) has challenged the idea that large black hole (BH) masses ($ge$10$^8$ M$_{odot}$) are needed to launch relativistic jets. We present near-infrared imaging data of the gam
Context. The origin of blazar variability, seen from radio up to gamma rays, is still a heavily debated matter and broadband flares offer a unique testbed towards a better understanding of these extreme objects. Such an energetic outburst was detecte