ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

278   0   0.0 ( 0 )
 نشر من قبل Toshihiro Fujii
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m$^2$ Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometres as well as 16 highly significant UHECR shower candidates.



قيم البحث

اقرأ أيضاً

The origin and nature of ultra-high-energy cosmic rays (UHECRs) remain an open question in astroparticle physics. Motivated by the need for an unprecedented aperture for further advancements, the Fluorescence detector Array of Single-pixel Telescopes (FAST) is a prospective next-generation, ground-based UHECR observatory that aims to cover a huge area by deploying a large array of low-cost fluorescence detectors. The full-scale FAST prototype consists of four 20 cm photomultiplier tubes at the focus of a segmented mirror 1.6 m in diameter. Over the last five years, three prototypes have been installed at the Telescope Array Experiment in Utah, USA, and one prototype at the Pierre Auger Observatory in Mendoza, Argentina, commencing remote observation of UHECRs in both hemispheres. We report on the latest results of these FAST prototypes, including telescope calibrations, atmospheric monitoring, ongoing electronics upgrades, development of sophisticated reconstruction methods, and UHECR detections.
We propose a novel approach for observing cosmic rays at ultra-high energy ($>10^{18}$~eV) by repurposing the existing network of smartphones as a ground detector array. Extensive air showers generated by cosmic rays produce muons and high-energy pho tons, which can be detected by the CMOS sensors of smartphone cameras. The small size and low efficiency of each sensor is compensated by the large number of active phones. We show that if user adoption targets are met, such a network will have significant observing power at the highest energies.
361 - W. Painter , A. Haungs , T. Huber 2019
Development of the Silicon photomultiplier Elementary Cell Add-on camera (SiECA) has provided extensive information regarding the use of SiPMs for future cosmic ray detection systems. We present the technical aspects of sensor readout development uti lizing Citiroc ASIC chips from Weeroc controlled by a Xilinx FPGA to process and package events from four 64 channel Hamamatsu MPPC S13361 arrays generating 128 frame events with an integration time of 2.5ms (parameters are based on JEM-EUSO geometry but can be easily adjusted). With single photon counting capability, SiECA proves SiPM are viable sensors to replace Multi-Anode PhotoMultiplier Tubes in future devices, especially when high luminosity exposure is possible potentially damaging MAPMT based systems. Complementary to the technical aspects, computational and analysis methods for sensor array characterization and in depth device flat-fielding are presented. Provided channel by channel biasing, in comparison to uniform biasing with MAPMTs, fine tuning of operating parameters with MPPC arrays allows for substantial improvements in detector and signal uniformity.
The origin and nature of ultra-high energy cosmic rays (UHECRs) are hot topics in the astroparticle physics community. The Fluorescence detector Array of Single-pixel Telescopes (FAST) is a design for a next-generation ground-based UHECR observatory, addressing the requirements for a large-area, low-cost detector suitable for measuring the properties of the highest energy cosmic rays with an unprecedented aperture. We have developed a full-scale prototype consisting of four 200 mm photomultiplier tubes at the focus of a segmented mirror of 1.6 m in diameter. Over the last three years, we have installed three prototypes at the Telescope Array Experiment in Utah, USA. These telescopes have been steadily taking data since installation. We report on preliminary results of the full-scale FAST prototypes, including measurements of UHECRs, and distant ultra-violet lasers used to study the atmospheric transparency. Furthermore, we discuss the installation of an additional identical FAST prototype at the Pierre Auger Observatory in Argentina. Possible benefits to the Telescope Array Experiment and the Pierre Auger Observatory include a comparison of the transparency of the atmosphere above both experiments, a study of the systematic uncertainty associated with their existing fluorescence detectors, and a cross-calibration of their energy and Xmax scales.
One of the uncertainties in interpretation of ultra-high energy cosmic ray (UHECR) data comes from the hadronic interaction models used for air shower Monte Carlo (MC) simulations. The number of muons observed at the ground from UHECR-induced air sho wers is expected to depend upon the hadronic interaction model. One may therefore test the hadronic interaction models by comparing the measured number of muons with the MC prediction. In this paper, we present the results of studies of muon densities in UHE extensive air showers obtained by analyzing the signal of surface detector stations which should have high $it{muon , purity}$. The muon purity of a station will depend on both the inclination of the shower and the relative position of the station. In 7 years data from the Telescope Array experiment, we find that the number of particles observed for signals with an expected muon purity of $sim$65% at a lateral distance of 2000 m from the shower core is $1.72 pm 0.10{rm (stat.)} pm 0.37 {rm (syst.)}$ times larger than the MC prediction value using the QGSJET II-03 model for proton-induced showers. A similar effect is also seen in comparisons with other hadronic models such as QGSJET II-04, which shows a $1.67 pm 0.10 pm 0.36$ excess. We also studied the dependence of these excesses on lateral distances and found a slower decrease of the lateral distribution of muons in the data as compared to the MC, causing larger discrepancy at larger lateral distances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا