ﻻ يوجد ملخص باللغة العربية
We formulate an adiabatic approximation for the imaginary-time Schroedinger equation. The obtained adiabatic condition consists of two inequalities, one of which coincides with the conventional adiabatic condition for the real-time Schroedinger equation, but the other does not. We apply this adiabatic approximation to the analysis of Markovian dynamics of the classical Ising model, which can be formulated as the imaginary-time Schrodinger equation, to obtain an asymptotic formula for the probability that the system reaches the ground state in the limit of a long annealing time in simulated annealing. Using this form, we amend the theory of Somma, Batista, and Ortiz for a convergence condition for simulated annealing.
Motivated by recent progress of quantum technologies, we study a discretized quantum adiabatic process for a one-dimensional free fermion system described by a variational wave function, i.e., a parametrized quantum circuit. The wave function is comp
In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simult
Using Schwinger Variational Principle we solve the problem of quantum harmonic oscillator with time dependent frequency. Here, we do not take the usual approach which implicitly assumes an adiabatic behavior for the frequency. Instead, we propose a n
Reliable and robust convergence to the electronic ground state within density functional theory (DFT) Kohn-Sham (KS) calculations remains a thorny issue in many systems of interest. In such cases, charge sloshing can delay or completely hinder the co
Many partitioning methods may be used to partition a network into smaller clusters while minimizing the number of cuts needed. However, other considerations must also be taken into account when a network represents a real system such as a power grid.