Model computations of blue stragglers and W UMa-type stars in globular clusters


الملخص بالإنكليزية

It was recently demonstrated that contact binaries occur in globular clusters (GCs) only immediately below turn-off point and in the region of blue straggler stars (BSs). In addition, observations indicate that at least a significant fraction of BSs in these clusters was formed by the binary mass-transfer mechanism. The aim of our present investigation is to obtain and analyze a set of evolutionary models of cool, close detached binaries with a low metal abundance, which are characteristic of GC. We computed the evolution of 975 models of initially detached, cool close binaries with different initial parameters. The models include mass exchange between components as well as mass and angular momentum loss due to the magnetized winds for very low-metallicity binaries with Z = 0.001. The models are interpreted in the context of existing data on contact binary and blue straggler members of GCs. The model parameters agree well with the observed positions of the GC contact binaries in the Hertzsprung-Russell diagram. Contact binaries in the lower part of the cluster main sequence are absent because there are no binaries with initial orbital periods shorter than 1.5 d. Contact binaries end their evolution as mergers that appear in the BS region. Binary-formed BSs populate the whole observed BS region in a GC, but a gap is visible between low-mass mergers that are concentrated along the zero-age main sequence and binary BSs occupying the red part of the BS region. Very few binary mergers are expected to rotate rapidly and/or possess chemical peculiarities resulting from the exposure of the layers processed by CNO nuclear reactions. All other binary mergers are indistinguishable from the collisionally formed mergers. The results show that binary-formed BSs may constitute at least a substantial fraction of all BSs in a GC.

تحميل البحث