ﻻ يوجد ملخص باللغة العربية
Following our recent letter, we study in detail an entry-wise diffusion of non-hermitian complex matrices. We obtain an exact partial differential equation (valid for any matrix size $N$ and arbitrary initial conditions) for evolution of the averaged extended characteristic polynomial. The logarithm of this polynomial has an interpretation of a potential which generates a Burgers dynamics in quaternionic space. The dynamics of the ensemble in the large $N$ is completely determined by the coevolution of the spectral density and a certain eigenvector correlation function. This coevolution is best visible in an electrostatic potential of a quaternionic argument built of two complex variables, the first of which governs standard spectral properties while the second unravels the hidden dynamics of eigenvector correlation function. We obtain general large $N$ formulas for both spectral density and 1-point eigenvector correlation function valid for any initial conditions. We exemplify our studies by solving three examples, and we verify the analytic form of our solutions with numerical simulations.
We prove localization with high probability on sets of size of order $N/log N$ for the eigenvectors of non-Hermitian finitely banded $Ntimes N$ Toeplitz matrices $P_N$ subject to small random perturbations, in a very general setting. As perturbation
The so called Inomata-McKinley spinors are a particular solution of the non-linear Heisenberg equation. In fact, free linear massive (or mass-less) Dirac fields are well known to be represented as a combination of Inomata-McKinley spinors. More recen
We compare the Ornstein-Uhlenbeck process for the Gaussian Unitary Ensemble to its non-hermitian counterpart - for the complex Ginibre ensemble. We exploit the mathematical framework based on the generalized Greens functions, which involves a new, hi
We solve the loop equations to all orders in $1/N^2$, for the Chain of Matrices matrix model (with possibly an external field coupled to the last matrix of the chain). We show that the topological expansion of the free energy, is, like for the 1 and
By exploring a spinor space whose elements carry a spin 1/2 representation of the Lorentz group and satisfy the the Fierz-Pauli-Kofink identities we show that certain symmetries operations form a Lie group. Moreover, we discuss the reflex of the Dira