ﻻ يوجد ملخص باللغة العربية
We consider the formation of satellites around the Pluto-Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of most circular orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Damping and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto-Charon binary. With simple models and numerical experiments, we show how the Pluto-Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.
The Pluto-Charon binary system is the best-studied representative of the binary Kuiper-belt population. Its origins are vital to understanding the formation of other Kupier-belt objects (KBO) and binaries, and the evolution of the outer solar-system.
New Horizons mission observations show that the small satellites Styx, Nix, Kerberos and Hydra, of the Pluto-Charon system, have not tidally spun-down to near synchronous spin states and have high obliquities with respect to their orbit about the Plu
The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile ices CH$_4$, CO, and N$_2$, that dominate Plutos surface, have complicated spatial distributions resulting from sublimat
A search for temporal changes on Pluto and Charon was motivated by (1) the discovery of young surfaces in the Pluto system that imply ongoing or recent geologic activity, (2) the detection of active plumes on Triton during the Voyager 2 flyby, and (3
NASAs New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Plutos encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved i