ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground-state of motion

131   0   0.0 ( 0 )
 نشر من قبل Oskar Painter J
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using pulsed optical excitation and read-out along with single phonon counting techniques, we measure the transient back-action, heating, and damping dynamics of a nanoscale silicon optomechanical crystal cavity mounted in a dilution refrigerator at a base temperature of 11mK. In addition to observing a slow (~740ns) turn-on time for the optical-absorption-induced hot phonon bath, we measure for the 5.6GHz `breathing acoustic mode of the cavity an initial phonon occupancy as low as 0.021 +- 0.007 (mode temperature = 70mK) and an intrinsic mechanical decay rate of 328 +- 14 Hz (mechanical Q-factor = 1.7x10^7). These measurements demonstrate the feasibility of using short pulsed measurements for a variety of quantum optomechanical applications despite the presence of steady-state optical heating.



قيم البحث

اقرأ أيضاً

Ground-state cooling of mechanical resonators is an important task in quantum optomechanics, because it is a necessary prerequisite for creation, manipulation, and application of macroscopic mechanical coherence. Here, we propose a transient-state sc heme to accelerate ground-state cooling of a mechanical resonator in a three-mode loop-coupled optomechanical system via shortcuts to adiabaticity (STA). We consider four kinds of coupling protocols and calculate the evolution of the mean phonon number of the mechanical resonator in both the adiabatic and STA cases. We verify that the ground-state cooling of the mechanical resonator can be achieved with the STA method in a much shorter period. The STA method can also be generalized to accelerate other adiabatic processes in cavity optomechanics, and hence this work will open up a new realm of fast optomechanical manipulations.
We have cooled the motion of a radio-frequency nanomechanical resonator by parametric coupling to a driven microwave frequency superconducting resonator. Starting from a thermal occupation of 480 quanta, we have observed occupation factors as low as 3.8$pm$1.2 and expect the mechanical resonator to be found with probability 0.21 in the quantum ground state of motion. Cooling is limited by random excitation of the microwave resonator and heating of the dissipative mechanical bath.
We demonstrate that a geometric phase, generated via a sequence of four optomechanical interactions, can be used to increase, or generate nonlinearities in the unitary evolution of a mechanical resonator. Interactions of this form lead to new mechani sms for preparing mechanical squeezed states, and preparation of non-classical states with significant Wigner negativity.
Utilizing the tools of quantum optics to prepare and manipulate quantum states of motion of a mechanical resonator is currently one of the most promising routes to explore non-classicality at a macroscopic scale. An important quantum optomechanical t ool yet to be experimentally demonstrated is the ability to perform complete quantum state reconstruction. Here, after providing a brief introduction to quantum states in phase space, we review and contrast the current proposals for state reconstruction of mechanical motional states and discuss experimental progress. Furthermore, we show that mechanical quadrature tomography using back-action-evading interactions gives an $s$-parameterized Wigner function where the numerical parameter $s$ is directly related to the optomechanical measurement strength. We also discuss the effects of classical noise in the optical probe for both state reconstruction and state preparation by measurement.
Photothermal heating represents a major constraint that limits the performance of many nanoscale optoelectronic and optomechanical devices including nanolasers, quantum optomechanical resonators, and integrated photonic circuits. Although radiation-p ressure damping has been reported to cool an individual vibrational mode of an optomechanical resonator to its quantum ground state, to date the internal material temperature within an optomechanical resonator has not been reported to cool via laser excitation. Here we demonstrate the direct laser refrigeration of a semiconductor optomechanical resonator >20K below room temperature based on the emission of upconverted, anti-Stokes photoluminescence of trivalent ytterbium ions doped within a yttrium-lithium-fluoride (YLF) host crystal. Optically-refrigerating the lattice of a dielectric resonator has the potential to impact several fields including scanning probe microscopy, the sensing of weak forces, the measurement of atomic masses, and the development of radiation-balanced solid-state lasers. In addition, optically refrigerated resonators may be used in the future as a promising starting point to perform motional cooling for exploration of quantum effects at mesoscopic length scales,temperature control within integrated photonic devices, and solid-state laser refrigeration of quantum materials
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا