ﻻ يوجد ملخص باللغة العربية
Gamma-ray bursts (GRBs) offer a route to characterizing star-forming galaxies and quantifying high-$z$ star formation that is distinct from the approach of traditional galaxy surveys: GRB selection is independent of dust and probes even the faintest galaxies that can evade detection in flux-limited surveys. However, the exact relation between the GRB rate and the star formation rate (SFR) throughout all redshifts is controversial. The Optically Unbiased GRB Host (TOUGH) survey includes observations of all GRB hosts (69) in an optically unbiased sample of Swift GRBs and we utilize these to constrain the evolution of the UV GRB-host-galaxy luminosity function (LF) between $z=0$ and $z=4.5$, and compare this with LFs derived from both Lyman-break galaxy (LBG) surveys and simulation modeling. At all redshifts we find the GRB hosts to be most consistent with a luminosity function derived from SFR weighted models incorporating GRB production via both metallicity-dependent and independent channels with a relatively high level of bias toward low metallicity hosts. In the range $1<z<3$ an SFR weighted LBG derived (i.e., non-metallicity biased) LF is also a reasonable fit to the data. Between $zsim3$ and $zsim6$, we observe an apparent lack of UV bright hosts in comparison with LBGs, though the significance of this shortfall is limited by nine hosts of unknown redshift.
We present 10 new gamma-ray burst (GRB) redshifts and another five redshift limits based on host galaxy spectroscopy obtained as part of a large program conducted at the Very Large Telescope (VLT). The redshifts span the range 0.345 < z < 2.54. Three
Long-duration gamma-ray bursts (GRBs) are powerful tracers of star-forming galaxies. We have defined a homogeneous subsample of 69 Swift GRB-selected galaxies spanning a very wide redshift range. Special attention has been devoted to making the sampl
Due to their relation to massive stars, long-duration gamma-ray bursts (GRBs) allow pinpointing star formation in galaxies independently of redshift, dust obscuration, or galaxy mass/size, thus providing a unique tool to investigate the star-formatio
GRB-selected galaxies are broadly known to be faint, blue, young, star-forming dwarf galaxies. This insight, however, is based in part on heterogeneous samples of optically selected, lower-redshift galaxies. To study the statistical properties of GRB
Strongly lensed active galactic nuclei (AGN) provide a unique opportunity to make progress in the study of the evolution of the correlation between the mass of supermassive black holes ($mathcal M_{BH}$) and their host galaxy luminosity ($L_{host}$).